分析 (1)先根據(jù)圓周角定理得出∠ACB=90°,再由切線的性質(zhì)得出∠ABD=90°,進(jìn)而可得出△BCD∽△ABD,據(jù)此可得出結(jié)論;
(2)先根據(jù)(1)中的結(jié)論得出BD2的值,再由勾股定理求出AB的長(zhǎng),由圓的面積公式即可得出結(jié)論.
解答 解:(1)∵AB是⊙O的直徑,![]()
∴∠ACB=90°.
∵BD是⊙O的切線,
∴∠ABD=90°,
∴△BCD∽△ABD,
∴$\frac{BD}{AD}$=$\frac{DC}{BD}$,即BD2=DC•AD;
(2)∵AC=8cm,DC=2cm,
∴AD=8+2=10cm.
∵BD2=DC•AD,
∴BD2=2×10=20.
∵∠ABD=90°,
∴AB=$\sqrt{A{D}^{2}-B{D}^{2}}$=$\sqrt{100-20}$=4$\sqrt{5}$,
∴OA=$\frac{1}{2}$AB=2$\sqrt{5}$,
∴⊙O的面積=π×(2$\sqrt{5}$)2=20π.
點(diǎn)評(píng) 本題考查的是相似三角形的判定和性質(zhì)及圓的切線的性質(zhì),利用切線的性質(zhì)得到角之間的關(guān)系是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com