分析 理解證明:根據(jù)AAS證明△ABD≌△CAF;
類比探究:根據(jù)AAS證明即可;
拓展應(yīng)用:利用類比探究的結(jié)論、三角形的面積公式計(jì)算即可.
解答 理解證明:
證明:∵CF⊥AE,BD⊥AE,
∴∠ADB=∠CFA=90°,
∵∠MAN=90°,
∴∠ABD+∠BAD=90°,又∠CAF+∠BAD=90°,
∴∠ABD=∠CAF,
在△ABD和△CAF中,
$\left\{\begin{array}{l}{∠ABD=∠CAF}\\{∠ADB=∠CFA}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△CAF;
類比探究:
證明:∵∠1=∠2,
∴∠ABE=∠CAF,
∵∠1=∠ABE+∠EAB,∠1=∠BAC,
∴∠ABE=∠CAF,
在△ABE和△CAF中,
$\left\{\begin{array}{l}{∠AEB=∠CFA}\\{∠ABE=∠CAF}\\{AB=AC}\end{array}\right.$,
∴△ABE≌△CAF;
拓展應(yīng)用:∵△ABC的面積為15,CD=2BD,
∴△ABD的面積為15×$\frac{1}{3}$=5,
由類比探究得,△ABE≌△CAF,
∴△ACF與△BDE的面積之和=△ABD的面積=5,
故答案為:5.
點(diǎn)評(píng) 本題考查的是三角形全等的判定和性質(zhì),掌握全等三角形的性質(zhì)定理和判定定理是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (a,b) | B. | (a,-b) | C. | (-a,b) | D. | (-a,-b) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1 | B. | 1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 銳角三角形 | B. | 鈍角三角形 | C. | 等邊三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 只有一個(gè)實(shí)數(shù)根 | B. | 有兩個(gè)相等的實(shí)數(shù)根 | ||
| C. | 有兩個(gè)不相等的實(shí)數(shù)根 | D. | 沒(méi)有實(shí)數(shù)根 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a=$\sqrt{{a}^{2}}$=($\sqrt{a}$)2 | B. | 若$\sqrt{{a}^{2}}$=a,則a=($\sqrt{a}$)2 | C. | (2$\sqrt{-7}$)2=28 | D. | 2$\sqrt{(-4)^{2}}$=-8 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com