分析 (1)利用鄰補(bǔ)角的性質(zhì)和三角形內(nèi)角和定理解題;
(2)當(dāng)DC=4時(shí),利用∠DEC+∠EDC=130°,∠ADB+∠EDC=130°,求出∠ADB=∠DEC,再利用AB=DC=4,即可得出△ABD≌△DCE;
(3)當(dāng)∠BDA的度數(shù)為100°或115°時(shí),△ADE的形狀是等腰三角形.
解答 解:(1)∵在△BAD中,∠B=∠C=∠40°,∠BDA=120°,
∴∠BAD=180°-∠B-∠BDA=180°-50°-120°=10°;
∠EDC=180°-∠ADB-∠ADE=180°-120°-50°=10°.
∠DEC=180°-∠C-∠EDC=180°-50°-10°=120°,
故答案為:10,120,;
(2)當(dāng)DC=4時(shí),△ABD≌△DCE,
理由:∵∠C=50°,
∴∠DEC+∠EDC=130°,
又∵∠ADE=50°,
∴∠ADB+∠EDC=130°,
∴∠ADB=∠DEC,
又∵AB=DC=4,
在△ABD和△DCE中,
$\left\{\begin{array}{l}{∠ADB=∠DEC}\\{∠B=∠C}\\{AB=DC}\end{array}\right.$,
∴△ABD≌△DCE(AAS),
即當(dāng)DC=4時(shí),△ABD≌△DCE.
(3)當(dāng)∠BDA的度數(shù)為100°或115°時(shí),△ADE的形狀是等腰三角形,
∵∠BDA=100°時(shí),
∴∠ADC=80°,
∵∠C=50°,
∴∠DAC=50°,
∴∠DAC=∠ADE,
∴△ADE的形狀是等腰三角形;
∵當(dāng)∠BDA的度數(shù)為115°時(shí),
∴∠ADC=65°,
∵∠C=50°,
∴∠DAC=65°,
∵∠ADE=50°,
∴∠AED=65°,
∴∠DAC=∠AED,
∴△ADE的形狀是等腰三角形.
點(diǎn)評 此題主要考查學(xué)生對等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形外角的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,此題涉及到的知識(shí)點(diǎn)較多,綜合性較強(qiáng),但難度不大,屬于基礎(chǔ)題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com