分析 (1)在BC上截取BE=AB,利用“邊角邊”證明△ABD和△BED全等,根據(jù)全等三角形對應(yīng)邊相等可得DE=AD,全等三角形對應(yīng)角相等可得∠AED=∠A,然后求出∠C=∠CDE,根據(jù)等角對等邊可得CE=DE,然后結(jié)合圖形整理即可得證;
(2)由(1)知:△ABD≌△BED,根據(jù)全等三角形對應(yīng)邊相等可得DE=AD,全等三角形對應(yīng)角相等可得∠AED=∠A,然后求出∠C=∠CDE,根據(jù)等角對等邊可得CE=DE,等量代換得到EC=AD,即得答案BC=BE+EC=AB+AD;
(3)為了把∠A=2∠C轉(zhuǎn)化成兩個角相等的條件,可以構(gòu)造輔助線:在AC上取BF=BA,連接AE,根據(jù)線段的垂直平分線的性質(zhì)以及三角形的內(nèi)角和定理的推論能夠證明AB=F.再根據(jù)勾股定理表示出BC2,AB2.再運用代數(shù)中的公式進行計算就可證明.
解答 解:(1)在BC上截取BE=BA,如圖1,
在△ABD和△BED中,
$\left\{\begin{array}{l}{BE=BA}\\{∠ABD=∠EBD}\\{BD=BD}\end{array}\right.$,
∴△ABD≌△BED,
∴∠BED=∠A,
∵∠C=38°,∠A=2∠C,
∴∠A=76°,
∴∠ABC=180°-∠C-∠A=66°,
BD平分∠ABC,![]()
∴∠ABD=33°;
(2)由(1)知:△ABD≌△BED,
∴BE=AB,DE=AD,∠BED=∠A,
又∵∠A=2∠C,
∴∠BED=∠C+∠EDC=2∠C,
∴∠EDC=∠C,
∴ED=EC,
∴EC=AD
∴BC=BE+EC=AB+AD;
(3)如圖2,
過B作BG⊥AC于G,
以B為圓心,BA長為半徑畫弧,交AC于F,
則BF=BA,
在Rt△ABG和Rt△GBG中,
$\left\{\begin{array}{l}{BA=BF}\\{AG=AG}\end{array}\right.$,
∴Rt△ABG≌Rt△GBG,
∴AG=FG,
∴∠BFA=∠A,
∵∠A=2∠C,
∴∠BFA=∠FBC+∠C=2∠C,
∴∠FBC=∠C,
∴FB=FC,
FC=AB,
在Rt△ABG和Rt△BCG中,
BC2=BG2+CG2,
AB2=BG2+AG2
∴BC2-AB2=CG2-AG2=(CG+AG)(CG-AG)
=AC(CG-GF)=AC•FC
=AC•AB.
點評 本題考查了全等三角形的判定與性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),等角對等邊的性質(zhì),作輔助線構(gòu)造出全等三角形和等腰三角形是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 50° | B. | 100° | C. | 130° | D. | 150° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 月租費 | 通話費 |
| 25元 | 0.15元/分鐘 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com