分析 根據(jù)中點(diǎn)定義可得AC=2AO,然后求出AO=AB,AC=AG,再利用“邊角邊”證明△AOG和△ABC全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ABC=∠AOG=90°,再利用“角邊角”證明△AOF和△COE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AF=CE,然后求出四邊形AECF為平行四邊形,最后根據(jù)對(duì)角線互相垂直的平行四邊形是菱形證明.
解答 解:四邊形是菱形,
理由:∵四邊形ABCD為矩形,
∴AD∥BC,
∴∠FAO=∠ECO,
又∵BG=AB,AC=2AB,O為AC中點(diǎn),
∴AO=CO=AB,AC=AG,
在△AOG和△ABC中,
$\left\{\begin{array}{l}{AO=AB}\\{∠BAC=∠OAG}\\{AC=AG}\end{array}\right.$,
∴△AOG≌△ABC(SAS),
∴∠ABC=∠AOG=90°,
在△AOF和△COE中,
$\left\{\begin{array}{l}{∠FAO=∠ECO}\\{AO=CO}\\{∠AOF=∠COE}\end{array}\right.$,
∴△AOF≌△COE(ASA),
∴AF=CE,
∴四邊形AECF為平行四邊形,
又∵AC⊥EF,
∴四邊形AECF為菱形.
點(diǎn)評(píng) 本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),菱形的判定與性質(zhì),熟記各圖形的性質(zhì)與判定方法找出三角形全等的條件是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 15sin50°米 | B. | 15cos50°米 | C. | 15tan50°米 | D. | $\frac{15}{tan50°}$米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com