【題目】濟(jì)寧某校為了解九年級學(xué)生藝術(shù)測試情況.以九年極(1)班學(xué)生的藝術(shù)測試成績?yōu)闃颖,?/span>
、
、
、
四個等級進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請你結(jié)合圖中所給信息解答下列問題:
![]()
(說明:
級:90分~100分;
級:75分~89分;
級60分~74分;
級:60分以下)
(1)此次抽樣共調(diào)查了多少名學(xué)生?
(2)請求出樣本中
級的學(xué)生人數(shù),井補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校九年級有1000名學(xué)生,請你用此樣本估計(jì)藝術(shù)測試中分?jǐn)?shù)不低于75分的學(xué)生人數(shù),
【答案】(1)此次抽樣共調(diào)查了50名學(xué)生;(2)樣本中
等級的人數(shù)是5名,補(bǔ)全條形統(tǒng)計(jì)圖見解析;(3)估計(jì)藝術(shù)測試中分?jǐn)?shù)不低于75分的學(xué)生人數(shù)約為660人.
【解析】
(1)根據(jù)A級的學(xué)生數(shù)和所占的百分比可以求得本次抽樣調(diào)查的學(xué)生數(shù);
(2)根據(jù)(1)中的結(jié)果和條形統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得D級的學(xué)生數(shù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以得到該校九年級藝術(shù)測試中分?jǐn)?shù)不低于75分的學(xué)生人數(shù).
(1)
(名),
即此次抽樣共調(diào)查了50名學(xué)生;
(2)樣本中
等級的人數(shù)是:
(名)
補(bǔ)全的條形統(tǒng)計(jì)圖如下圖所示;
![]()
(3)根據(jù)題意得:
(人),
答:估計(jì)藝術(shù)測試中分?jǐn)?shù)不低于75分的學(xué)生人數(shù)約為660人.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB=4,BC=6.若不改變矩形ABCD的形狀和大小,當(dāng)矩形頂點(diǎn)A在x軸的正半軸上左右移動時,矩形的另一個頂點(diǎn)D始終在y軸的正半軸上隨之上下移動.
(1)當(dāng)∠OAD=30°時,求點(diǎn)C的坐標(biāo);
(2)設(shè)AD的中點(diǎn)為M,連接OM、MC,當(dāng)四邊形OMCD的面積為
時,求OA的長;
(3)當(dāng)點(diǎn)A移動到某一位置時,點(diǎn)C到點(diǎn)O的距離有最大值,請直接寫出最大值,并求此時cos∠OAD的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,4),B(3,4),P 為線段 OA 上一動點(diǎn),過 O,P,B 三點(diǎn)的圓交 x 軸正半軸于點(diǎn) C,連結(jié) AB, PC,BC,設(shè) OP=m.
(1)求證:當(dāng) P 與 A 重合時,四邊形 POCB 是矩形.
(2)連結(jié) PB,求 tan∠BPC 的值.
(3)記該圓的圓心為 M,連結(jié) OM,BM,當(dāng)四邊形 POMB 中有一組對邊平行時,求所有滿足條件的 m 的值.
(4)作點(diǎn) O 關(guān)于 PC 的對稱點(diǎn)O ,在點(diǎn) P 的整個運(yùn)動過程中,當(dāng)點(diǎn)O 落在△APB 的內(nèi)部 (含邊界)時,請寫出 m 的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線
的頂點(diǎn)為C(1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0).
(1)求拋物線的解析式;
(2)如圖2,點(diǎn)E是BD上方拋物線上的一點(diǎn),連接AE交DB于點(diǎn)F,若AF=2EF,求出點(diǎn)E的坐標(biāo).
(3)如圖3,點(diǎn)M的坐標(biāo)為(
,0),點(diǎn)P是對稱軸左側(cè)拋物線上的一點(diǎn),連接MP,將MP沿MD折疊,若點(diǎn)P恰好落在拋物線的對稱軸CE上,請求出點(diǎn)P的橫坐標(biāo).
![]()
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y1=kx+b與反比例函數(shù)y2=
(n>0)交于點(diǎn)A(1,3),B(3,m).
(1)分別求兩個函數(shù)的解析式;
(2)根據(jù)圖像直接寫出,當(dāng)x為何值時,y1<y2;
(3)在x軸上找一點(diǎn)P,使得△OAP的面積為6,求出P點(diǎn)坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有一張矩形紙片ABCD,AB=4,BC=8,點(diǎn)M,N分別在矩形的邊AD,BC上,將矩形紙片沿直線MN折疊,使點(diǎn)C落在矩形的邊AD上,記為點(diǎn)P,點(diǎn)D落在G處,連接PC,交MN丁點(diǎn)Q,連接CM.
(1)求證:PM=PN;
(2)當(dāng)P,A重合時,求MN的值;
(3)若△PQM的面積為S,求S的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校一面墻
前有一塊空地,校方準(zhǔn)備用長
的柵欄(
)圍成一個一面靠墻的長方形花圍,再將長方形
分割成六塊(如圖所示) ,已知
,
,
,設(shè)
.
(1)用含
的代數(shù)式表示:
;
.
(2)當(dāng)長方形
的面積等于
時,求
的長.
(3)若在如圖的甲區(qū)域種植花卉.乙區(qū)域種柏草坪,種柏花卉的成本為每平方米100元,種被草坪的成本為每平方米50元,若種植花卉與草坪的總費(fèi)用超過6300元,求花圍的寬
的范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綠色出行是對環(huán)境影響最小的出行方式,“共享單車”已成為北京的一道靚麗的風(fēng)景線.某社會實(shí)踐活動小
組為了了解“共享單車”的使用情況,對本校教師在3月6日至3月10日使用單車的情況進(jìn)行了問卷調(diào)查,
以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖的一部分:
![]()
請根據(jù)以上信息解答下列問題:
(1)3月7日使用“共享單車”的教師人數(shù)為人,并請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)不同品牌的“共享單車”各具特色,社會實(shí)踐活動小組針對有過使用“共享單車”經(jīng)歷的教師做了進(jìn)一步調(diào)查,每位教師都按要求選擇了一種自己喜歡的“共享單車”,統(tǒng)計(jì)結(jié)果如圖,其中喜歡
的教師有36人,求喜歡
的教師的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DB∥AC,且DB=
AC,E是AC的中點(diǎn),
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com