欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉得到△ADE,連接BD,CE交于點F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當四邊形ADFC是菱形時,求BF的長.

分析 (1)由旋轉的性質得到三角形ABC與三角形ADE全等,以及AB=AC,利用全等三角形對應邊相等,對應角相等得到兩對邊相等,一對角相等,利用SAS得到三角形AEC與三角形ADB全等即可;
(2)根據(jù)∠BAC=45°,四邊形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB=AD,得到三角形ABD為等腰直角三角形,求出BD的長,由BD-DF求出BF的長即可.

解答 解:(1)由旋轉的性質得:△ABC≌△ADE,且AB=AC,
∴AE=AD,AC=AB,∠BAC=∠DAE,
∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,
在△AEC和△ADB中,
$\left\{\begin{array}{l}{AE=AD}\\{∠CAE=∠DAB}\\{AC=AB}\end{array}\right.$,
∴△AEC≌△ADB(SAS);

(2)∵四邊形ADFC是菱形,且∠BAC=45°,
∴∠DBA=∠BAC=45°,
由(1)得:AB=AD,
∴∠DBA=∠BDA=45°,
∴△ABD為直角邊為2的等腰直角三角形,
∴BD2=2AB2,即BD=2$\sqrt{2}$,
∴AD=DF=FC=AC=AB=2,
∴BF=BD-DF=2$\sqrt{2}$-2.

點評 此題考查了旋轉的性質,全等三角形的判定與性質,以及菱形的性質,熟練掌握旋轉的性質是解本題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

14.已知:如圖,正比例函數(shù)y=ax的圖象與反比例函數(shù)y=$\frac{k}{x}$的圖象交于點C(3,1)
(1)試確定上述比例函數(shù)和反比例函數(shù)的表達式;
(2)根據(jù)圖象回答,在第一象限內,當x取何值時,反比例函數(shù)的值大于正比例函數(shù)的值?
(3)點D(m,n)是反比例函數(shù)圖象上的一動點,其中0<m<3,過點C作直線AC⊥x軸于點A,交OD的延長線于點B;若點D是OB的中點,DE⊥x軸于點E,交OC于點F,試求四邊形DFCB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

15.函數(shù)y=-$\frac{1}{x+2}$中自變量x的取值范圍是x≠-2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

12.如圖,平面直角坐標系中O是原點,?ABCD的頂點A,C的坐標分別是(8,0),(3,4),點D,E把線段OB三等分,延長CD、CE分別交OA、AB于點F,G,連接FG.則下列結論:
①F是OA的中點;②△OFD與△BEG相似;③四邊形DEGF的面積是$\frac{20}{3}$;④OD=$\frac{4\sqrt{5}}{3}$
其中正確的結論是①③(填寫所有正確結論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.某中學廣場上的旗桿AB,在某一時刻它的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為3米,落在斜坡上的影長CD為2米,AB⊥BC,同一時刻,光線與水平面的夾角為60°,1米的豎立標桿PQ在斜坡上的影長QR為2米,求旗桿的高度(若結果中有根號,請保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.如圖,在平面直角坐標系中,直線y=$\frac{1}{2}$x+2與x軸交于點A,與y軸交于點C,拋物線y=-$\frac{1}{2}$x2+bx+c經(jīng)過A、C兩點,與x軸的另一交點為點B.
(1)求拋物線的函數(shù)表達式;
(2)點D為直線AC上方拋物線上一動點;
①連接BC、CD,設直線BD交線段AC于點E,△CDE的面積為S1,△BCE的面積為S2,求$\frac{S_1}{S_2}$的最大值;
②過點D作DF⊥AC,垂足為點F,連接CD,是否存在點D,使得△CDF中的某個角恰好等于∠BAC的2倍?若存在,求點D的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

16.用直角三角板,作△ABC的高,下列作法正確的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

13.如圖示AB為⊙O的一條弦,點C為劣弧AB的中點,E為優(yōu)弧AB上一點,點F在AE的延長線上,且BE=EF,線段CE交弦AB于點D.
①求證:CE∥BF;  
②若BD=2,且EA:EB:EC=3:1:$\sqrt{5}$,求△BCD的面積(注:根據(jù)圓的對稱性可知OC⊥AB).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

14.我市東坡實驗中學準備開展“陽光體育活動”,決定開設足球、籃球、乒乓球、羽毛球、排球等球類活動,為了了解學生對這五項活動的喜愛情況,隨機調查了m名學生(每名學生必選且只能選擇這五項活動中的一種).

根據(jù)以上統(tǒng)計圖提供的信息,請解答下列問題:
(1)m=100,n=5.
(2)補全上圖中的條形統(tǒng)計圖.
(3)若全校共有2000名學生,請求出該校約有多少名學生喜愛打乒乓球.
(4)在抽查的m名學生中,有小薇、小燕、小紅、小梅等10名學生喜歡羽毛球活動,學校打算從小薇、小燕、小紅、小梅這4名女生中,選取2名參加全市中學生女子羽毛球比賽,請用列表法或畫樹狀圖法,求同時選中小紅、小燕的概率.(解答過程中,可將小薇、小燕、小紅、小梅分別用字母A、B、C、D代表)

查看答案和解析>>

同步練習冊答案