分析 (1)連結(jié)0C,由AB為直徑,得到∠ACB=90°,求得∠E=∠ABC,根據(jù)等腰三角形的性質(zhì)得到∠ABC=∠OCB,等量代換得到∠E=∠OCB,推出OC⊥CD,于是得到結(jié)論;
(2)連接OC,由(1)得出的∠BCD=∠A,易知:∠OBC=∠CDE,因此等腰△OBC和等腰△DCE相似;由于題中告訴了BC=CE,可得到的條件是△OBC≌△DCE;因此OC=CD=6;在等腰Rt△OCD中,已知了直角邊的長(zhǎng),即可求出斜邊OD的長(zhǎng),進(jìn)而可求出BD的長(zhǎng).
解答
(1)證明:連結(jié)0C,
∵AB為直徑,
∴∠ACB=90°,
∴∠BCD+∠ECD=90°,
在Rt△ADE和Rt△ABC中,∠E=90°-∠A,∠ABC=90°-∠A,
∴∠E=∠ABC,
∵OB=OC,
∴∠ABC=∠OCB,
∴∠E=∠OCB,
又∵CD=DE,
∴∠E=∠ECD,
∴∠OCB=∠ECD,
∴∠OCB+∠BCD=90°,
即OC⊥CD,
∴CD為⊙O的切線;
(2)解:由(1)知:∠BCD=∠A,∠ACB=∠BCE=90°,
∴∠OBC=∠DCE,
∵OB=OC,CD=DE,
∴∠OBC=∠OCB=∠DCE=∠E,
在△OBC和△DCE中$\left\{\begin{array}{l}{∠OBC=∠DCE}\\{BC=CE}\\{∠OCB=∠E}\end{array}\right.$,
∴△OBC≌△DCE(ASA),
∴OC=CD=6,
Rt△OCD中,OC=CD=6,∠OCD=90°,
∴OD=6$\sqrt{2}$,
即BD=OD-OB=6$\sqrt{2}$-6.
點(diǎn)評(píng) 本題考查了切線的判定和性質(zhì),全等三角形的判定與性質(zhì),圓周角定理,正確的作出輔助線是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1.48×1010 | B. | -1.48×1010 | C. | 1.48×10-10 | D. | 1.48×10-12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com