| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①利用等邊對(duì)等角,即可證得:∠APO=∠ABO,∠DCO=∠DBO,則∠APO+∠DCO=∠ABO+∠DBO=∠ABD,據(jù)此即可求解;
②證明∠POC=60°且OP=OC,即可證得△OPC是等邊三角形;
③首先證明△OPA≌△CPE,則AO=CE,AC=AE+CE=AO+AP.
④過(guò)點(diǎn)C作CH⊥AB于H,根據(jù)S四邊形AOCP=S△ACP+S△AOC,利用三角形的面積公式即可求解.
解答 解:如圖1,連接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=$\frac{1}{2}$∠BAC=$\frac{1}{2}$×120°=60°,
∴OB=OC,∠ABC=90°-∠BAD=30°
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;
故①正確;
∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°-(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等邊三角形;
故②正確;
如圖2,在AC上截取AE=PA
,
∵∠PAE=180°-∠BAC=60°,
∴△APE是等邊三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,
在△OPA和△CPE中,
$\left\{\begin{array}{l}{PA=PE}\\{∠APO=∠CPE}\\{OP=CP}\end{array}\right.$,
∴△OPA≌△CPE(SAS),![]()
∴AO=CE,
∴AC=AE+CE=AO+AP;
故③正確;
如圖3,過(guò)點(diǎn)C作CH⊥AB于H,
∵∠PAC=∠DAC=60°,AD⊥BC,
∴CH=CD,
∴S△ABC=$\frac{1}{2}$AB•CH,
S四邊形AOCP=S△ACP+S△AOC=$\frac{1}{2}$AP•CH+$\frac{1}{2}$OA•CD=$\frac{1}{2}$AP•CH+$\frac{1}{2}$OA•CH=$\frac{1}{2}$CH•(AP+OA)=$\frac{1}{2}$CH•AC,
∴S△ABC=S四邊形AOCP;
故④正確.
故選D.
點(diǎn)評(píng) 本題主要考查了等腰三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),正確作出輔助線是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{9}{25}$ | B. | $\frac{12}{5}$ | C. | $\frac{9}{10}$ | D. | $\frac{9}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com