分析 (1)①先求得BP=CQ=3,PC=BD=5,然后根據(jù)等邊對(duì)等角求得∠B=∠C,最后根據(jù)SAS即可證明;
②因?yàn)閂P≠VQ,所以BP≠CQ,又∠B=∠C,要使△BPD與△CQP全等,只能BP=CP=4,根據(jù)全等得出CQ=BD=5,然后根據(jù)運(yùn)動(dòng)速度求得運(yùn)動(dòng)時(shí)間,根據(jù)時(shí)間和CQ的長(zhǎng)即可求得Q的運(yùn)動(dòng)速度;
(2)因?yàn)閂Q>VP,只能是點(diǎn)Q追上點(diǎn)P,即點(diǎn)Q比點(diǎn)P多走AB+AC的路程,據(jù)此列出方程,解這個(gè)方程即可求得.
解答 解:(1)①∵t=3(秒),
∴BP=CQ=3(厘米)
∵AB=10,D為AB中點(diǎn),
∴BD=5(厘米)
又∵PC=BC-BP=8-3=5(厘米)
∴PC=BD
∵AB=AC,
∴∠B=∠C,
在△BPD與△CQP中,
$\left\{\begin{array}{l}{BP=CQ}\\{∠B=∠C}\\{BD=PC}\end{array}\right.$,
∴△BPD≌△CQP(SAS),
②∵VP≠VQ,
∴BP≠CQ,
又∵∠B=∠C,
要使△BPD≌△CPQ,只能BP=CP=4,
∵△BPD≌△CPQ,
∴CQ=BD=5.
∴點(diǎn)P的運(yùn)動(dòng)時(shí)間t=$\frac{BP}{1}$=4(秒),
此時(shí)VQ=$\frac{CQ}{4}=\frac{5}{4}$=1.25(厘米/秒).
(2)因?yàn)閂Q>VP,只能是點(diǎn)Q追上點(diǎn)P,即點(diǎn)Q比點(diǎn)P多走AB+AC的路程
設(shè)經(jīng)過(guò)x秒后P與Q第一次相遇,依題意得1.25x=x+2×10,
解得x=80(秒),
此時(shí)P運(yùn)動(dòng)了80×1=80(厘米),
又∵△ABC的周長(zhǎng)為28厘米,80=28×2+24,
∴點(diǎn)P、Q在AB邊上相遇,即經(jīng)過(guò)了80秒,點(diǎn)P與點(diǎn)Q第一次在AB邊上相遇.
點(diǎn)評(píng) 本題考查了三角形全等的判定和性質(zhì),等腰三角形的性質(zhì),以及數(shù)形結(jié)合思想的運(yùn)用,解題的根據(jù)是熟練掌握三角形全等的判定和性質(zhì).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 110° | B. | 105° | C. | 90° | D. | 85° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 80° | B. | 105° | C. | 100° | D. | 110° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2-a | B. | -2-a | C. | $\frac{1}{2-a}$ | D. | $-\frac{1}{2+a}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{5}{13}$ | B. | $\frac{5}{12}$ | C. | $\frac{{3\sqrt{13}}}{13}$ | D. | $\frac{{2\sqrt{13}}}{13}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com