分析 (1)根據(jù)旋轉的性質,得出A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,再根據(jù)ASA即可判定△BCF≌△BA1D;
(2)根據(jù)∠C=40°,△ABC是等腰三角形,即可得出∠A=∠C1=∠C=40°,進而得到∠C1=∠CBF,∠A=∠A1BD,由此可判定A1E∥BC,A1B∥CE,進而得到四邊形A1BCE是平行四邊形,最后根據(jù)A1B=BC,即可判定四邊形A1BCE是菱形.
解答
解:(1)∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C,
∵將等腰△ABC繞頂點B逆時針方向旋轉40度到△A1BC1的位置,
∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,
在△BCF與△BA1D中,
$\left\{\begin{array}{l}{∠{A}_{1}=∠C}\\{{A}_{1}B=BC}\\{∠{A}_{1}BD=∠CBF}\end{array}\right.$,
∴△BCF≌△BA1D(ASA);
(2)∵∠C=40°,△ABC是等腰三角形,
∴∠A=∠C1=∠C=40°,
∴∠C1=∠CBF=40°,∠A=∠A1BD=40°,
∴A1E∥BC,A1B∥CE,
∴四邊形A1BCE是平行四邊形,
∵A1B=BC,
∴四邊形A1BCE是菱形.
點評 本題主要考查了旋轉的性質,等腰三角形的性質,全等三角形的判定以及菱形的判定的運用,解題時注意:一組鄰邊相等的平行四邊形是菱形.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com