分析 (1)由AE=DE,∠AED=90°,AD=3$\sqrt{2}$,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是線段BD的中點(diǎn),所以EF=$\frac{1}{2}$BD=2.5;
(2)連接CF,直角△DEB中,EF是斜邊BD上的中線,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=$\sqrt{2}$EF;
(3)思路同(1).連接CF,延長EF交CB于點(diǎn)G,先證△EFC是等腰三角形,要證明EF=FG,需要證明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么這個三角形就是個等腰直角三角形,因此得出結(jié)論.
解答 解:(1)∵∠AED=90°,AE=DE,AD=3$\sqrt{2}$,
∴AE=DE=3,
在Rt△BDE中,
∵DE=3,BE=4,
∴BD=5,
又∵F是線段BD的中點(diǎn),
∴EF=$\frac{1}{2}$BD=2.5;
(2)如圖1,連接CF,線段CE與FE之間的數(shù)量關(guān)系是CE=$\sqrt{2}$FE;
解法1:∵∠AED=∠ACB=90°![]()
∴B、C、D、E四點(diǎn)共圓
且BD是該圓的直徑,
∵點(diǎn)F是BD的中點(diǎn),
∴點(diǎn)F是圓心,
∴EF=CF=FD=FB,
∴∠FCB=∠FBC,∠ECF=∠CEF,
由圓周角定理得:∠DCE=∠DBE,
∴∠FCB+∠DCE=∠FBC+∠DBE=45°
∴∠ECF=45°=∠CEF,![]()
∴△CEF是等腰直角三角形,
∴CE=$\sqrt{2}$EF.
解法2:∵∠BED=∠AED=∠ACB=90°,
∵點(diǎn)F是BD的中點(diǎn),
∴CF=EF=FB=FD,
∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,
∴∠DFE=2∠ABD,
同理∠CFD=2∠CBD,
∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,
即∠CFE=90°,
∴CE=$\sqrt{2}$EF.
(2)(1)中的結(jié)論仍然成立.
解法1:如圖2-1,連接CF,延長EF交CB于點(diǎn)G,
∵∠ACB=∠AED=90°,
∴DE∥BC,
∴∠EDF=∠GBF,
在△EDF和△GBF中,
$\left\{\begin{array}{l}{∠EDF=∠GBF}\\{DF=BF}\\{∠EFD=∠GFB}\end{array}\right.$,
∴△EDF≌△GBF,
∴EF=GF,BG=DE=AE,
∵AC=BC,
∴CE=CG,
∴∠EFC=90°,CF=EF,
∴△CEF為等腰直角三角形,
∴∠CEF=45°,
∴CE=$\sqrt{2}$FE;
解法2:如圖2-2,連結(jié)CF、AF,
∵∠BAD=∠BAC+∠DAE=45°+45°=90°,
又∵點(diǎn)F是BD的中點(diǎn),
∴FA=FB=FD,
在△ACF和△BCF中,
$\left\{\begin{array}{l}{FA=FB}\\{AC=BC}\\{CF=CF}\end{array}\right.$,
∴△ACF≌△BCF,
∴∠ACF=∠BCF=$\frac{1}{2}$∠ACB=45°,
∵FA=FB,CA=CB,
∴CF所在的直線垂直平分線段AB,
同理,EF所在的直線垂直平分線段AD,
又∵DA⊥BA,
∴EF⊥CF,
∴△CEF為等腰直角三角形,
∴CE=$\sqrt{2}$EF.
點(diǎn)評 本題主要考查了幾何綜合變換,通過全等三角形來得出線段的相等,如果沒有全等三角形的要根據(jù)已知條件通過輔助線來構(gòu)建是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①②均正確 | B. | ①②均錯 | C. | ①正確,②錯誤 | D. | ①錯誤,②正確 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com