分析 (1)由內(nèi)心的性質(zhì)可知;∠ACI=∠BCI,∠BAE=∠CAE,由圓周角定理可知∠BCE=∠BAE,從而得到∠CAE+∠ACI=∠ICB+∠BCE,從而得到∠EIC=∠ICE,于是得到IE=EC;
(2)先證明DCE∽△CAE,從而可得到CE2=DE•EA,由IE=EC從而得到IE2=DE•EA.
解答 解:(1)如圖所示;連接IC.![]()
∵點I是△ABC的內(nèi)心,
∴∠ACI=∠BCI,∠BAE=∠CAE.
又∵∠BAE=∠BCE,
∴∠CAE=∠BCE.
∴∠CAE+∠ACI=∠ICB+∠BCE.
∴∠EIC=∠ICE.
∴IE=EC.
(2)由(1)可知:∠CAE=∠BCE.
又∵∠AEC=∠DEC,
∴△DCE∽△CAE.
∴$\frac{CE}{AE}=\frac{DE}{CE}$.
∴CE2=DE•EA.
∵IE=EC,
∴IE2=DE•EA.
點評 本題主要考查的是三角形的內(nèi)切圓、相似三角形的性質(zhì)和判定、圓周角定理,明確三角形的內(nèi)心是三角形內(nèi)角平分線的交點是解題的關鍵.
科目:初中數(shù)學 來源: 題型:填空題
| 輸入x | … | 1 | 2 | 3 | 4 | 5 | … |
| 輸出y | … | 2 | 5 | 10 | 17 | 26 | … |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com