分析 根據(jù)等邊三角形三線合一的性質可得D為BC的中點,即BD=CD,在直角三角形ABD中,已知AB、BD,根據(jù)勾股定理即可求得AD的長,即可求三角形ABC的面積,即可解題.
解答 解:等邊三角形三線合一,![]()
∴D為BC的中點,AD⊥BC,
∴BD=DC=$\frac{5}{2}$,
在Rt△ABD中,AB=5,BD=$\frac{5}{2}$,
∴AD=$\sqrt{A{B}^{2}-B{D}^{2}}=\frac{5}{2}\sqrt{3}$,
∴△ABC的面積為 $\frac{1}{2}$BC•AD=$\frac{1}{2}$×5×$\frac{5\sqrt{3}}{2}$=$\frac{25\sqrt{3}}{4}$.
故答案為:$\frac{5\sqrt{3}}{2}$,$\frac{25\sqrt{3}}{4}$
點評 本題主要考查了勾股定理在直角三角形中的運用,等邊三角形面積的計算,本題中根據(jù)勾股定理計算AD的值是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com