分析 (1)連接CD,首先根據(jù)△ABC是等腰直角三角形,∠C=90°,點(diǎn)D是AB的中點(diǎn)得到CD=AD,CD⊥AD,然后根據(jù)四邊形PECF是矩形得到△APE是等腰直角三角形,從而得到△DCE≌△DAF,證得DE=DF,DE⊥DF;
(2)根據(jù)DE=DF,DE⊥DF,得到EF=$\sqrt{2}$DE=$\sqrt{2}$DF,從而得到當(dāng)DE和DF同時(shí)最短時(shí),EF最短得到此時(shí)點(diǎn)P與點(diǎn)D重合線段EF最短.
解答
解:(1)DE=DF,DE⊥DF,
證明:連接CD,
∵△ABC是等腰直角三角形,∠C=90°,點(diǎn)D是AB的中點(diǎn),
∴CD=AD,CD⊥AD,
∵四邊形PECF是矩形,
∴CE=FP,F(xiàn)P∥CB,
∴△APF是等腰直角三角形,
∴AF=PF=EC,
∴∠DCE=∠A=45°,
∴△DCE≌△DAF,
∴DE=DF,∠ADF=∠CDE,
∵∠CDA=90°,
∴∠EDF=90°,
∴DE=DF,DE⊥DF;
(2)∵DE=DF,DE⊥DF,
∴EF=$\sqrt{2}$DE=$\sqrt{2}$DF,
∴當(dāng)DE和DF同時(shí)最短時(shí),EF最短,
∴當(dāng)DF⊥AC,DE⊥AB時(shí),二者最短,
∴此時(shí)點(diǎn)P與點(diǎn)D重合,
∴點(diǎn)P與點(diǎn)D重合時(shí),線段EF最短.
點(diǎn)評 本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形及矩形的性質(zhì),解題的關(guān)鍵是能夠證得兩個(gè)三角形全等,難度不大.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a:b:c=1:$\sqrt{2}$:1 | B. | ∠A:∠B:∠C=3:4:5 | C. | (a+b)(a-b)=c2 | D. | ∠A:∠B:∠C=1:2:3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | $\sqrt{7}$ | C. | 5或$\sqrt{7}$ | D. | 無法確定 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com