分析 根據平面內線段最短,構建直角三角形,解直角三角形即可.
解答
解:如圖,過點作CO⊥AB于O,延長BO到C',使OC'=OC,連接MC',交AB于P,
此時PC'=PM+PC'=PM+PC的值最小,
連接AC',
∵CO⊥AB,AC=BC,∠ACB=90°,
∴∠ACO=$\frac{1}{2}$×90°=45°,
∵CO=OC',CO⊥AB,
∴AC'=CA=AM+MC=8,
∴∠OC'A=∠OCA=45°,
∴∠C'AC=90°,
∴C'A⊥AC,
∴MC′=$\sqrt{A{M}^{2}+A{C}^{2}}$=$\sqrt{{2}^{2}+{8}^{2}}$=2$\sqrt{17}$,
∴PC+PM的最小值為2$\sqrt{17}$.
故答案為:2$\sqrt{17}$.
點評 本題考查了線路最短的問題,確定動點P為何位置時,使PC+PM的值最小是關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com