| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
分析 ①根據(jù)有兩組對(duì)應(yīng)角相等的三角形相似即可證明;
②依據(jù)相似三角形對(duì)應(yīng)邊成比例即可求得;
③由AD=2$\sqrt{10}$時(shí),求得DC=10,然后根據(jù)對(duì)應(yīng)邊相等則兩三角形全等,即可證得;
④分兩種情況討論,通過(guò)三角形相似即可求得.
解答 解:①∵AB=AC,
∴∠B=∠C,
又∵∠ADE=∠B
∴∠ADE=∠C,
∴△ADE∽△ACD,
∴$\frac{AD}{AE}$=$\frac{AB}{AD}$
∴AD2=AE•AB,
故①正確,
②易證得△CDE∽△BAD,∵BC=16,
設(shè)BD=y,CE=x,
∴$\frac{AB}{CD}$=$\frac{BD}{CE}$,
∴$\frac{10}{16-y}$=$\frac{y}{x}$,
整理得:y2-16y+64=64-10x,
即(y-8)2=64-10x,
∴0<x≤6.4,
∵AE=AC-CE=10-x,
∴3.6≤AE<10.
故②正確.
③作AG⊥BC于G,
∵AB=AC=10,∠ADE=∠B=α,cosα=$\frac{4}{5}$,
∵BC=16,
∴CG=$\frac{1}{2}$BC=8,
∴AG=6,
(1)當(dāng)點(diǎn)D在G點(diǎn)左側(cè)時(shí),如圖1所示,
∵AD=2$\sqrt{10}$,
∴DG=2,
∴CD=CG+DG=8+2=10,
∴AB=CD,
∴△ABD與△DCE全等;
(2)當(dāng)點(diǎn)D在G點(diǎn)右側(cè)時(shí),如圖2所示,
∵AD=2$\sqrt{10}$,
∴DG=2,
∴CD=CG-DG=8-2=6,
∴AB≠CD,
∴△ABD與△DCE不全等;
故③錯(cuò)誤;
④當(dāng)∠AED=90°時(shí),由①可知:△ADE∽△ACD,
∴∠ADC=∠AED,
∵∠AED=90°,
∴∠ADC=90°,
即AD⊥BC,
∵AB=AC,
∴BD=CD,
∴∠ADE=∠B=α且cosα=$\frac{4}{5}$,AB=10,
BD=8.
當(dāng)∠CDE=90°時(shí),易△CDE∽△BAD,
∵∠CDE=90°,
∴∠BAD=90°,
∵∠B=α且cosα=$\frac{4}{5}$.AB=10,
∴cosB=$\frac{AB}{BD}$=$\frac{4}{5}$,
∴BD=12.5.
故④正確.
故選C.
點(diǎn)評(píng) 本題考查了相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),三角函數(shù)的定義以及不等式的性質(zhì).注意掌握分類(lèi)討論思想的應(yīng)用是解此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{2}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{8}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 10 | B. | 5 | C. | 6 | D. | 9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com