欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.求下列不定方程的整數(shù)解:
①111x+321y=75;
②37x+41y=1;
③25x+13y+7z=4;
④x2-4xy+5y2=169;
⑤x2-y2=88.

分析 ①首先將方程做適當(dāng)變形,根據(jù)解為整數(shù)確定其中一個未知數(shù)的取值,再進(jìn)一步求得方程的另一個解;
②首先將方程做適當(dāng)變形,根據(jù)解為整數(shù)確定其中一個未知數(shù)的取值,再進(jìn)一步求得方程的另一個解;
③設(shè)25x+13y=t,于是t+7z=4.于是原方程可化為$\left\{\begin{array}{l}{25x+8y=t①}\\{t+7z=4②}\end{array}\right.$,用前面的方法可以求得①的解為:$\left\{\begin{array}{l}{x=3t-8u}\\{y=-t+3u}\end{array}\right.$,u是整數(shù),繼而可由②得出$\left\{\begin{array}{l}{t=2000+5v}\\{z=1000+3v}\end{array}\right.$,v是整數(shù),消去t即可得;
④原方程整理得:x2-4xy+5y2-169=0,由△=(-4y)2-4(5y2-169)=4(169-y2)可知169-y2是完全平方數(shù)即可,滿足條件的y值有0,5,-5,12,-12,據(jù)此可得方程組的整數(shù)解;
⑤正整數(shù)x、y滿足方程時必有x>y>0知x+y>x-y>0.又x+y與x-y有相同的奇偶性,根據(jù)原方程(x-y)(x+y)=88,右邊為偶數(shù)知x+y與x-y均為偶數(shù),根據(jù)x+y,x-y是88的因數(shù)可得$\left\{\begin{array}{l}{x-y=2}\\{x+y=44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=4}\\{x+y=22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-2}\\{x+y=-44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-4}\\{x+y=-22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=44}\\{x+y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=22}\\{x+y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-44}\\{x+y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-22}\\{x+y=-4}\end{array}\right.$,解之即可.

解答 解:①111x+321y=75,
x=$\frac{75-321y}{111}$=$\frac{75-99y}{111}$-2y①,
∵原方程的解為整數(shù),
∴當(dāng)y=3時,x=-8,是原方程的一組解,故y=111t+3,代入①式得x=-8-321t(t為整數(shù)),
故原方程的解為$\left\{\begin{array}{l}{x=-8-321t}\\{y=111t+3}\end{array}\right.$(t為整數(shù)).

②37x+41y=1,
x=$\frac{1-41y}{37}$=$\frac{1-4y}{37}$-y①,
∵原方程的解為整數(shù),
∴當(dāng)y=-9時,x=10,是原方程的一組解,故y=37t-9,代入①式得x=10-41t(t為整數(shù)),
故原方程的解為$\left\{\begin{array}{l}{x=10-41t}\\{y=37t-9}\end{array}\right.$(t為整數(shù)).

③25x+13y+7z=4,
設(shè)25x+13y=t,于是t+7z=4.
于是原方程可化為$\left\{\begin{array}{l}{25x+8y=t①}\\{t+7z=4②}\end{array}\right.$,
用前面的方法可以求得①的解為:$\left\{\begin{array}{l}{x=3t-8u}\\{y=-t+3u}\end{array}\right.$,u是整數(shù);
②的解為$\left\{\begin{array}{l}{t=2000+5v}\\{z=1000+3v}\end{array}\right.$,v是整數(shù).
消去t,得$\left\{\begin{array}{l}{x=6000-8u+15v}\\{y=-2000+3u-5v}\\{z=1000+3v}\end{array}\right.$,u,v是整數(shù).
即當(dāng)u、v取不同整數(shù)的時候,會得到相應(yīng)的x、y、z的整數(shù)值.

④原方程整理得:x2-4xy+5y2-169=0,
∵△=(-4y)2-4(5y2-169)=4(169-y2),
∴169-y2是完全平方數(shù)即可,滿足條件的y值有0,5,-5,12,-12,
由此適合原方程的全部整數(shù)解為:$\left\{\begin{array}{l}{x=22}\\{y=5}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=5}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=-5}\end{array}\right.$或$\left\{\begin{array}{l}{x=-22}\\{y=-5}\end{array}\right.$或$\left\{\begin{array}{l}{x=29}\\{y=12}\end{array}\right.$或$\left\{\begin{array}{l}{x=-29}\\{y=12}\end{array}\right.$或$\left\{\begin{array}{l}{x=-19}\\{y=-12}\end{array}\right.$或$\left\{\begin{array}{l}{x=19}\\{y=-12}\end{array}\right.$或$\left\{\begin{array}{l}{x=13}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=-13}\\{y=0}\end{array}\right.$;

⑤∵正整數(shù)x、y滿足方程時,必有x>y>0.
∴x+y>x-y>0.
又∵x+y與x-y有相同的奇偶性,
∵原方程(x-y)(x+y)=88,右邊為偶數(shù),
∴從而x+y與x-y均為偶數(shù),
又∵x+y,x-y是88的因數(shù),
∴有$\left\{\begin{array}{l}{x-y=2}\\{x+y=44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=4}\\{x+y=22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-2}\\{x+y=-44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-4}\\{x+y=-22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=44}\\{x+y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=22}\\{x+y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-44}\\{x+y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-22}\\{x+y=-4}\end{array}\right.$,
由此可解得$\left\{\begin{array}{l}{x=43}\\{y=41}\end{array}\right.$或$\left\{\begin{array}{l}{x=13}\\{y=9}\end{array}\right.$或$\left\{\begin{array}{l}{x=-43}\\{y=-41}\end{array}\right.$或$\left\{\begin{array}{l}{x=-13}\\{y=-9}\end{array}\right.$或$\left\{\begin{array}{l}{x=23}\\{y=-21}\end{array}\right.$或$\left\{\begin{array}{l}{x=13}\\{y=-9}\end{array}\right.$或$\left\{\begin{array}{l}{x=21}\\{y=-23}\end{array}\right.$或$\left\{\begin{array}{l}{x=-13}\\{y=-17}\end{array}\right.$.

點(diǎn)評 本題主要考查了一次不定方程(組),本題是求不定方程的整數(shù)解,先將方程做適當(dāng)變形,然后列舉出其中一個未知數(shù)的適合條件的所有整數(shù)值,再求出另一個未知數(shù)的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.單項式$\frac{4π{a}^{2}b}{3}$的系數(shù)是$\frac{4π}{3}$,次數(shù)是3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.若$\frac{a-b}{a}$=$\frac{5}{8}$,則$\frac{a}$=$\frac{3}{8}$,$\frac{a+b}$=$\frac{11}{8}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.計算:(-2)2÷$\frac{-{1}^{4}}{3}$×($\frac{2}{3}$+$\frac{1}{2}$-$\frac{3}{4}$)-|2-1$\frac{5}{6}$|÷(-$\frac{1}{3}$)×3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.計算:
(1)-8-3×(-1)7-(-1)8
(2)3+50÷22×(-$\frac{1}{5}$)-1;
(3)-32+(-2)3×(-4)÷|$\frac{1}{4}$|;
(4)(-2)2+(-9)÷(-1$\frac{5}{4}$);
(5)-0.52+4-|-22-4|-(-1$\frac{1}{2}$)3×$\frac{16}{27}$;
(6)(-1.25)×$\frac{2}{5}$×8-9÷(1$\frac{1}{2}$)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.在自習(xí)課上,小芳同學(xué)將一張長方形紙片ABCD按如圖所示的方式折疊起來,她發(fā)現(xiàn)D、B兩點(diǎn)均落在了對角線AC的中點(diǎn)O處,且四邊形AECF是菱形.若AB=3cm,則陰影部分的面積為( 。
A.1cm2B.2cm2C.$\sqrt{2}$cm2D.$\sqrt{3}$cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.將拋物線y=-2x2向右平移1個單位,再向上平移3個單位,得到的拋物線是(  )
A.y=-2(x+1)2+3B.y=-2(x-1)2+3C.y=-2(x+1)2-3D.y=-2(x-1)2-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.解方程
(1)-2x=4                           
(2)x-10=7
(3)x+13=5x+37                    
(4)3x-x=-$\frac{1}{2}$+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.對于正整數(shù)a,我們規(guī)定:若a為奇數(shù),則f(a)=3a+1;若a為偶數(shù),則f(a)=$\frac{a}{2}$.例如f(15)=3×15+1=46,f(10)=$\frac{10}{2}$=5.若a1=8,a2=f(a1),a3=f(a2),a4=f(a3),…,依此規(guī)律進(jìn)行下去,得到一列數(shù)a1,a2,a3,a4,…,an,…(n為正整數(shù)),則a3=2,a1+a2+a3+…+a2016=  4711.

查看答案和解析>>

同步練習(xí)冊答案