分析 ①首先將方程做適當(dāng)變形,根據(jù)解為整數(shù)確定其中一個未知數(shù)的取值,再進(jìn)一步求得方程的另一個解;
②首先將方程做適當(dāng)變形,根據(jù)解為整數(shù)確定其中一個未知數(shù)的取值,再進(jìn)一步求得方程的另一個解;
③設(shè)25x+13y=t,于是t+7z=4.于是原方程可化為$\left\{\begin{array}{l}{25x+8y=t①}\\{t+7z=4②}\end{array}\right.$,用前面的方法可以求得①的解為:$\left\{\begin{array}{l}{x=3t-8u}\\{y=-t+3u}\end{array}\right.$,u是整數(shù),繼而可由②得出$\left\{\begin{array}{l}{t=2000+5v}\\{z=1000+3v}\end{array}\right.$,v是整數(shù),消去t即可得;
④原方程整理得:x2-4xy+5y2-169=0,由△=(-4y)2-4(5y2-169)=4(169-y2)可知169-y2是完全平方數(shù)即可,滿足條件的y值有0,5,-5,12,-12,據(jù)此可得方程組的整數(shù)解;
⑤正整數(shù)x、y滿足方程時必有x>y>0知x+y>x-y>0.又x+y與x-y有相同的奇偶性,根據(jù)原方程(x-y)(x+y)=88,右邊為偶數(shù)知x+y與x-y均為偶數(shù),根據(jù)x+y,x-y是88的因數(shù)可得$\left\{\begin{array}{l}{x-y=2}\\{x+y=44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=4}\\{x+y=22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-2}\\{x+y=-44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-4}\\{x+y=-22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=44}\\{x+y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=22}\\{x+y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-44}\\{x+y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-22}\\{x+y=-4}\end{array}\right.$,解之即可.
解答 解:①111x+321y=75,
x=$\frac{75-321y}{111}$=$\frac{75-99y}{111}$-2y①,
∵原方程的解為整數(shù),
∴當(dāng)y=3時,x=-8,是原方程的一組解,故y=111t+3,代入①式得x=-8-321t(t為整數(shù)),
故原方程的解為$\left\{\begin{array}{l}{x=-8-321t}\\{y=111t+3}\end{array}\right.$(t為整數(shù)).
②37x+41y=1,
x=$\frac{1-41y}{37}$=$\frac{1-4y}{37}$-y①,
∵原方程的解為整數(shù),
∴當(dāng)y=-9時,x=10,是原方程的一組解,故y=37t-9,代入①式得x=10-41t(t為整數(shù)),
故原方程的解為$\left\{\begin{array}{l}{x=10-41t}\\{y=37t-9}\end{array}\right.$(t為整數(shù)).
③25x+13y+7z=4,
設(shè)25x+13y=t,于是t+7z=4.
于是原方程可化為$\left\{\begin{array}{l}{25x+8y=t①}\\{t+7z=4②}\end{array}\right.$,
用前面的方法可以求得①的解為:$\left\{\begin{array}{l}{x=3t-8u}\\{y=-t+3u}\end{array}\right.$,u是整數(shù);
②的解為$\left\{\begin{array}{l}{t=2000+5v}\\{z=1000+3v}\end{array}\right.$,v是整數(shù).
消去t,得$\left\{\begin{array}{l}{x=6000-8u+15v}\\{y=-2000+3u-5v}\\{z=1000+3v}\end{array}\right.$,u,v是整數(shù).
即當(dāng)u、v取不同整數(shù)的時候,會得到相應(yīng)的x、y、z的整數(shù)值.
④原方程整理得:x2-4xy+5y2-169=0,
∵△=(-4y)2-4(5y2-169)=4(169-y2),
∴169-y2是完全平方數(shù)即可,滿足條件的y值有0,5,-5,12,-12,
由此適合原方程的全部整數(shù)解為:$\left\{\begin{array}{l}{x=22}\\{y=5}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=5}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=-5}\end{array}\right.$或$\left\{\begin{array}{l}{x=-22}\\{y=-5}\end{array}\right.$或$\left\{\begin{array}{l}{x=29}\\{y=12}\end{array}\right.$或$\left\{\begin{array}{l}{x=-29}\\{y=12}\end{array}\right.$或$\left\{\begin{array}{l}{x=-19}\\{y=-12}\end{array}\right.$或$\left\{\begin{array}{l}{x=19}\\{y=-12}\end{array}\right.$或$\left\{\begin{array}{l}{x=13}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=-13}\\{y=0}\end{array}\right.$;
⑤∵正整數(shù)x、y滿足方程時,必有x>y>0.
∴x+y>x-y>0.
又∵x+y與x-y有相同的奇偶性,
∵原方程(x-y)(x+y)=88,右邊為偶數(shù),
∴從而x+y與x-y均為偶數(shù),
又∵x+y,x-y是88的因數(shù),
∴有$\left\{\begin{array}{l}{x-y=2}\\{x+y=44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=4}\\{x+y=22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-2}\\{x+y=-44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-4}\\{x+y=-22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=44}\\{x+y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=22}\\{x+y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-44}\\{x+y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-22}\\{x+y=-4}\end{array}\right.$,
由此可解得$\left\{\begin{array}{l}{x=43}\\{y=41}\end{array}\right.$或$\left\{\begin{array}{l}{x=13}\\{y=9}\end{array}\right.$或$\left\{\begin{array}{l}{x=-43}\\{y=-41}\end{array}\right.$或$\left\{\begin{array}{l}{x=-13}\\{y=-9}\end{array}\right.$或$\left\{\begin{array}{l}{x=23}\\{y=-21}\end{array}\right.$或$\left\{\begin{array}{l}{x=13}\\{y=-9}\end{array}\right.$或$\left\{\begin{array}{l}{x=21}\\{y=-23}\end{array}\right.$或$\left\{\begin{array}{l}{x=-13}\\{y=-17}\end{array}\right.$.
點(diǎn)評 本題主要考查了一次不定方程(組),本題是求不定方程的整數(shù)解,先將方程做適當(dāng)變形,然后列舉出其中一個未知數(shù)的適合條件的所有整數(shù)值,再求出另一個未知數(shù)的值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1cm2 | B. | 2cm2 | C. | $\sqrt{2}$cm2 | D. | $\sqrt{3}$cm2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=-2(x+1)2+3 | B. | y=-2(x-1)2+3 | C. | y=-2(x+1)2-3 | D. | y=-2(x-1)2-3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com