分析 (1)先根據(jù)矩形的性質(zhì),利用勾股定理列出表達式:HG2=DH2+DG2,HE2=AH2+AE2,再根據(jù)菱形的性質(zhì),得到等式DH2+DG2=AH2+AE2,最后計算AE的長;
(2)先根據(jù)已知條件,用HL判定Rt△DHG≌Rt△AEH,得到∠DHG=∠AEH,因為∠AEH+∠AHE=90°,∠DHG+∠AHE=90°,可得菱形的一個角為90°,進而判定該菱形為正方形.
解答 (1)解:∵AD=6,AH=2
∴DH=AD-AH=4
∵四邊形ABCD是矩形
∴∠A=∠D=90°
∴在Rt△DHG中,HG2=DH2+DG2
在Rt△AEH中,HE2=AH2+AE2
∵四邊形EFGH是菱形
∴HG=HE
∴DH2+DG2=AH2+AE2
即42+62=22+AE2
∴AE=$\sqrt{48}$=4$\sqrt{3}$;
(2)證明:∵AH=2,DG=2,
∴AH=DG,
∵四邊形EFGH是菱形,
∴HG=HE,
在Rt△DHG和Rt△AEH中,
$\left\{\begin{array}{l}{HG=EH}\\{\;}\\{DG=AH}\end{array}\right.$,
∴Rt△DHG≌Rt△AEH(HL),
∴∠DHG=∠AEH,
∵∠AEH+∠AHE=90°,
∴∠DHG+∠AHE=90°,
∴∠GHE=90°,
∵四邊形EFGH是菱形,
∴四邊形EFGH是正方形.
點評 本題主要考查了矩形、菱形的性質(zhì)以及正方形的判定,解決問題的關(guān)鍵是掌握:矩形的四個角都是直角,菱形的四條邊都線段,有一個角為直角的菱形是正方形.在解題時注意,求直角三角形的邊長時,一般都需要考慮運用勾股定理進行求解.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 16(1+a)2=25 | B. | 25(1-2a)=16 | C. | 25(1-a)2=16 | D. | 25(1-a2)=16 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 40° | B. | 50° | C. | 70° | D. | 20° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0.28×10-6米 | B. | 2.8×10-8米 | C. | 2.8×10-7米 | D. | 2.8×10-6米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 品名 | 單價(臺/元) |
| 電視機 | 5000 |
| 洗衣機 | 2000 |
| 空調(diào) | 2400 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{1}{2017}$ | B. | $\frac{1}{2017}$ | C. | 2017 | D. | -2017 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com