分析 (1)要證△AEC≌△DEB,由于AB=CD,根據(jù)等弦所對(duì)的弧相等得$\widehat{AB}$=$\widehat{CD}$,根據(jù)等量減等量還是等量,得$\widehat{BD}$=$\widehat{CA}$,由等弧對(duì)等弦得BD=CA,由圓周角定理得,∠ACE=∠DBE,∠AEC=∠DEB,即可根據(jù)AAS判定;
(2)由△AEC≌△DEB得,BE=CE,得到點(diǎn)E在直線BC的中垂線上,連接BO,CO,BO和CO是半徑,則BO和CO相等,即點(diǎn)O在線段BC的中垂線上,亦即直線EO是線段BC的中垂線,OE⊥BC.
解答
(1)證明:∵AB=CD,
∴$\widehat{AB}$=$\widehat{CD}$.
∴$\widehat{AB}$-$\widehat{AD}$=$\widehat{CD}$-$\widehat{AD}$.
∴$\widehat{BD}$=$\widehat{CA}$.
∴BD=CA.
在△AEC與△DEB中,
$\left\{\begin{array}{l}{∠ACE=∠DBE}\\{∠AEC=∠DEB}\\{BD=CA}\end{array}\right.$,
∴△AEC≌△DEB(AAS).
(2)解:OE⊥BC,
如圖,連接OB、OC、BC.
由(1)得BE=CE.
∴點(diǎn)E在線段BC的中垂線上,
∵BO=CO,
∴點(diǎn)O在線段BC的中垂線上,
∴OE⊥BC.
點(diǎn)評(píng) 本題考查了圓周角定理、等弦所對(duì)的弧相等,等弧對(duì)等弦、全等三角形的判定和性質(zhì),熟練掌握性質(zhì)定理是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | EC:CG=5:1 | B. | EF:FC=1:1 | C. | EF:FC=3:2 | D. | EF:EC=3:5 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com