| A. | ①②③ | B. | ②③④ | C. | ①②④ | D. | ①③④ |
分析 ①根據(jù)平行四邊形的性質(zhì)和平行線的性質(zhì)解答即可;
②延長(zhǎng)EF,交CD延長(zhǎng)線于M,證明△AEF≌△DMF,得到EF=FM,根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答;
③設(shè)∠FEC=x,用x分別表示出∠DFE和∠AEF,比較即可;
④根據(jù)EF=FM,得到S△EFC=S△CFM,根據(jù)MC>BE,得到S△BEC<2S△EFC.
解答 解:①∵F是AD的中點(diǎn),
∴AF=FD,
∵在?ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,![]()
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=$\frac{1}{2}$∠BCD,故此選項(xiàng)正確;
②如圖1,延長(zhǎng)EF,交CD延長(zhǎng)線于M,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠A=∠MDF,
∵F為AD中點(diǎn),
∴AF=FD,
在△AEF和△DFM中,
$\left\{\begin{array}{l}{∠A=∠MDF}\\{∠AFE=∠DFM}\\{AF=DF}\end{array}\right.$,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FE,故②正確;
③設(shè)∠FEC=x,則∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x,
∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故此選項(xiàng)正確;
④∵EF=FM,
∴S△EFC=S△CFM,
∵M(jìn)C>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF錯(cuò)誤,
故選:A.
點(diǎn)評(píng) 本題考查的是平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)、直角三角形的性質(zhì),正確作出輔助線、得出△AEF≌△DMF是解題關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
| a | 1 | 2 | 3 |
| s |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 條形統(tǒng)計(jì)圖 | B. | 扇形統(tǒng)計(jì)圖 | C. | 折線統(tǒng)計(jì)圖 | D. | 以上都不對(duì) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a-b>0 | B. | -3a<-3b | C. | a|c|<b|c| | D. | a(c2+1)<b(c2+1) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com