分析 (1)連接OC,根據(jù)垂徑定理和三角形的外角的性質(zhì)證明∠DAB=∠AOB,求出∠AOB的度數(shù);
(2)根據(jù)直角三角形的性質(zhì)得到BE=$\frac{1}{2}$OB,設(shè)⊙O的半徑為r,根據(jù)勾股定理求出r,根據(jù)等邊三角形的性質(zhì)得到答案.
解答 解:(1)
連接OC,
∵OA⊥BC,OC=OB,
∴∠AOC=∠AOB,∠ACO=∠ABO,
∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB,∠ACO=∠OAB,
∴∠DAB=∠AOC,
∴∠DAB=∠AOB,又∠DAB+∠AOB=60°,
∴∠AOB=30°;
(2)∵∠AOB=30°,
∴BE=$\frac{1}{2}$OB,
設(shè)⊙O的半徑為r,則BE=$\frac{1}{2}$r,OE=r-1,
由勾股定理得,r2=($\frac{1}{2}$r)2+(r-1)2,
解得r1=4+2$\sqrt{3}$,r2=4-2$\sqrt{3}$(舍去)
∵OB=OC,∠BOC=2∠AOB=60°,
∴BC=r=4+2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查的是勾股定理、圓周角定理和垂徑定理的應(yīng)用,正確作出輔助線、理解垂直于弦的直徑平分這條弦、等邊對(duì)等角是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a+b人 | B. | 1$\frac{1}{3}$a | C. | a×8 | D. | $\frac{a}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1種 | B. | 2種 | C. | 3種 | D. | 4種 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | 1.5 | C. | 3 | D. | 2.5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com