分析 (1)首先利用等邊三角形的性質(zhì)和全等三角形的判定證得△ABD≌△BCE(SAS),利用全等三角形的性質(zhì)得∠EAM=∠EBA,由相似三角形的(AA)判定定理得結(jié)論;
(2)利用(1)中結(jié)論可得∠BAD=∠MBD,又∠BDA=∠MDB,由相似三角形的判定定理得△BDA∽△MDB,利用相似三角形的性質(zhì)可得結(jié)論.
解答 證明:(1)∵△ABC是等邊三角形,
∴∠BAC=∠ABC=∠ACB=60°,AB=AC=BC,
在△ABD與△BCE中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABC=∠BCE=60°}\\{BD=CE}\end{array}\right.$,
∴△ABD≌△BCE(SAS),
∴∠BAD=∠CBE,
∵∠EAM=∠CAB-∠BAD=60°-∠BAD,∠EBA=∠ABC-∠CBE=60°-∠CBE,
∴∠EAM=∠EBA,
∵∠AEM=∠BEA,
∴△AME∽△BAE;
(2)∵∠BAD=∠CBE,即∠BAD=∠MBD,∠BDA=∠MDB,
∴△BDA∽△MDB,
∴$\frac{BD}{MD}=\frac{DA}{DB}$,
∴BD2=DA•DM.
點評 本題主要考查了全等三角形與相似三角形的判定及性質(zhì)定理,利用等邊三角形的性質(zhì)得到判斷全等三角形的條件是解答此題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | (-1,-1) | B. | (2,5) | C. | (1,6) | D. | (-2,5) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com