分析 (1)由已知得四邊形ABCD為正方形,證明Rt△ADF≌Rt△ECD,然后推出∠ADE+∠DAF=90°;進(jìn)而得出AF⊥DE;
(2)首先根據(jù)題意證明四邊形MNPQ是菱形,然后又因?yàn)锳F⊥DE,得出四邊形MNPQ為正方形.
解答 解:(1)AF=DE,且AF⊥DE.理由如下:
∵四邊形ABCD為正方形,
∴AD=DC=CB且∠ADC=∠DCB=90°,
在Rt△ADF和Rt△ECD中
$\left\{\begin{array}{l}{AD=DC}\\{∠ADC=∠DCB}\\{CE=DF}\end{array}\right.$,
∴Rt△ADF≌Rt△ECD(SAS),
∴AF=DE,
∴∠DAF=∠CDE,
∵∠ADE+∠CDE=90°,
∴∠ADE+∠DAF=90°,
∴∠AGD=90°,
∴AF⊥DE;
(2)結(jié)論:四邊形MNPQ是正方形.
證明:∵AM=ME,AQ=QD,
∴MQ∥DE且MQ=$\frac{1}{2}$DE,
同理可證:PN∥DE,PN=$\frac{1}{2}$DE;MN∥AF,MN=$\frac{1}{2}$AF;PQ∥AF,PQ=$\frac{1}{2}$AF;
∵AF=DE,
∴MN=NP=PQ=QM,
∴四邊形MNPQ是菱形,
又∵AF⊥DE,
∴∠MQP=90°,
∴四邊形MNPQ是正方形.
點(diǎn)評 本題考查的是中點(diǎn)四邊形,需要掌握全等三角形的判定,正方形的判定以及正方形的性質(zhì),難度一般.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1或-3 | B. | 3或-1 | C. | 3或-3 | D. | 1或-1 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com