分析 (1)連接OB,由圓的半徑相等和已知條件證明∠OBD=90°,即可證明BD是⊙O的切線;
(2)過點D作DG⊥BE于G,根據(jù)等腰三角形的性質(zhì)得到EG=$\frac{1}{2}$BE=5,由兩角相等的三角形相似,△ACE∽△DGE,利用相似三角形對應(yīng)角相等得到sin∠EDG=sinA=$\frac{5}{13}$,在Rt△EDG中,利用勾股定理求出DG的長,最后用三角函數(shù)即可得到結(jié)果.
解答 (1)證明:連接OB,
∵OB=OA,DE=DB,
∴∠A=∠OBA,∠DEB=∠ABD,
又∵CD⊥OA,
∴∠A+∠AEC=∠A+∠DEB=90°,
∴∠OBA+∠ABD=90°,
∴OB⊥BD,
∴BD是⊙O的切線;
(2)如圖,過點D作DG⊥BE于G,![]()
∵DE=DB,
∴EG=$\frac{1}{2}$BE=5,
∵∠ACE=∠DGE=90°,∠AEC=∠GED,
∴∠GDE=∠A,
∴△ACE∽△DGE,
∴sin∠EDG=sinA=$\frac{EG}{DE}$=$\frac{5}{13}$,即DE=13,
在Rt△ECG中,
∵DG=$\sqrt{D{E}^{2}-E{D}^{2}}$=12,
∵CD=15,DE=13,
∴CE=2,
在Rt△ACE中,AC=$\frac{CE}{tan∠A}$=$\frac{24}{5}$,
∴⊙O的直徑2OA=4AC=$\frac{96}{5}$.
點評 此題考查了切線的判定,以及相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3$\sqrt{3}$×5$\sqrt{3}$=15$\sqrt{3}$ | B. | 3$\sqrt{2}$$+2\sqrt{3}$=5$\sqrt{6}$ | C. | $\sqrt{8}$$-\sqrt{6}$=$\sqrt{2}$ | D. | $\sqrt{60}$$÷\sqrt{5}$=2$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com