分析 根據(jù)平行四邊形性質(zhì)得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB=90°,由勾股定理求出BP,證出AD=DP=5,BC=PC=5,得出DC=10=AB,再利用直角三角形面積求法即可得出答案.
解答 解:∵四邊形ABCD是平行四邊形,
∴AD∥CB,AB∥CD,
∴∠DAB+∠CBA=180°,
又∵AP和BP分別平分∠DAB和∠CBA,
∴∠PAB+∠PBA=$\frac{1}{2}$(∠DAB+∠CBA)=90°,![]()
在△APB中,∠APB=180°-(∠PAB+∠PBA)=90°;
∵AP平分∠DAB,
∴∠DAP=∠PAB,
∵AB∥CD,
∴∠PAB=∠DPA
∴∠DAP=∠DPA
∴△ADP是等腰三角形,
∴AD=DP=5,
同理:PC=CB=5,
即AB=DC=DP+PC=10,
在Rt△APB中,AB=10,AP=8,
∴BP=$\sqrt{1{0}^{2}-{8}^{2}}$=6,
∴△ABP的面積為:$\frac{1}{2}$×6×8=24(cm2).
故答案為:24.
點評 本題考查了平行四邊形性質(zhì)、平行線性質(zhì)、等腰三角形的性質(zhì)和判定、三角形的內(nèi)角和定理、勾股定理等知識點的綜合運用,正確得出BP的長是解題關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 30° | B. | 35° | C. | 40° | D. | 45° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $y=\frac{3x-5}{2}$ | B. | $y=\frac{3x+5}{2}$ | C. | $y=\frac{-3x+5}{2}$ | D. | $y=\frac{-3x-5}{2}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com