| A. | m>$\frac{3}{4}$ | B. | m>$\frac{3}{4}$且m≠2 | C. | -$\frac{1}{2}$<m<2 | D. | $\frac{3}{4}$<m<2 |
分析 根據(jù)一元二次方程的定義和根的判別式的意義得到m-2≠0且△=(2m+1)2-4(m-2)(m-2)>0,解得m>$\frac{3}{4}$且m≠2,再利用根與系數(shù)的關(guān)系得到-$\frac{2m+1}{m-2}$>0,則m-2<0時(shí),方程有正實(shí)數(shù)根,于是可得到m的取值范圍為$\frac{3}{4}$<m<2.
解答 解:根據(jù)題意得m-2≠0且△=(2m+1)2-4(m-2)(m-2)>0,
解得m>$\frac{3}{4}$且m≠2,
設(shè)方程的兩根為a、b,則a+b=-$\frac{2m+1}{m-2}$>0,ab=$\frac{m-2}{m-2}$=1>0,
而2m+1>0,
∴m-2<0,即m<2,
∴m的取值范圍為$\frac{3}{4}$<m<2.
故選D.
點(diǎn)評(píng) 本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當(dāng)△>0時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根;當(dāng)△=0時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根;當(dāng)△<0時(shí),方程無實(shí)數(shù)根.也考查了根與系數(shù)的關(guān)系.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | k≥$\frac{5}{4}$ | B. | k>$\frac{5}{4}$ | C. | k<$\frac{5}{4}$ | D. | k≤$\frac{5}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com