分析 由點(diǎn)M、N分別是AC、BC的中點(diǎn),根據(jù)三角形中位線定理得出MN=$\frac{1}{2}$AB為定值,則NE+DM=DE-MN,所以當(dāng)MN取最大值時(shí),DM+EN有最大值.而直徑是圓中最長(zhǎng)的弦,故當(dāng)DE為⊙O的直徑時(shí),可求得DM+EN的最大值.
解答 解:當(dāng)DE為⊙O的直徑時(shí),DM+EN有最大值.
當(dāng)DE為直徑時(shí),M點(diǎn)與O點(diǎn)重合,
∴AC也是直徑,AC=8cm.
∵∠ABC是直徑所對(duì)的圓周角,
∴∠ABC=90°,
∵∠C=30°,AB=4cm,
∴AB=$\frac{1}{2}$AC=8.
∵點(diǎn)M、N分別為AC、BC的中點(diǎn),
∴MN=$\frac{1}{2}$AB=2,
∴DM+EN=DE-MN=8-2=6,
故答案為:6.
點(diǎn)評(píng) 本題考查的是三角形中位線定理、等邊三角形的判定和性質(zhì)和圓周角定理,綜合運(yùn)用以上定理是解題的關(guān)鍵,解答時(shí),注意直徑是圓中最長(zhǎng)的弦.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | DE=DF | B. | EF=$\frac{1}{2}$AB | C. | S△ABD=S△ACD | D. | AD平分∠BAC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com