分析 (1)連接OD,OE,由AB為圓的直徑得到△BCD為直角三角形,再由E為斜邊BC的中點,得到DE=BE=DC,再由OB=OD,OE為公共邊,利用SSS得到△OBE與△ODE全等,由全等三角形的對應角相等得到DE與OD垂直,即可得證;
(2)在直角三角形ABC中,由∠BAC=30°,得到BC為AC的一半,根據(jù)BC=2DE求出BC的長,確定出AC的長,再由∠C=60°,DE=EC得到△EDC為等邊三角形,可得出DC的長,由AC-CD即可求出AD的長.
解答 (1)證明:連接OD、OE、BD,如圖所示:![]()
∵AB為圓O的直徑,
∴∠ADB=∠BDC=90°,
在Rt△BDC中,E為斜邊BC的中點,
∴DE=BE,
在△OBE和△ODE中,
$\left\{\begin{array}{l}{OB=OD}\\{OE=OE}\\{BE=DE}\end{array}\right.$,
∴△OBE≌△ODE(SSS),
∴∠ODE=∠ABC=90°,
則DE為圓O的切線;
(2)解:在Rt△ABC中,∠BAC=30°,
∴BC=$\frac{1}{2}$AC,
∵BC=2DE=4,
∴AC=8,
又∵∠C=60°,DE=CE,
∴△DEC為等邊三角形,即DC=DE=2,
則AD=AC-DC=6.
點評 本題考查了切線的判定、全等三角形的判定與性質,熟練掌握切線的判定方法是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 289(1-x)2=256 | B. | 256(1-x)2=289 | C. | 289(1-2x)=256 | D. | 256(1-2x)=289 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com