| A. | ∠B=∠C | B. | ∠D=∠E | C. | ∠DAE=∠BAC | D. | ∠CAD=∠DAC |
分析 補充∠EAD=∠BAC,由于∠EAD=∠BAC,可根據(jù)等式的性質(zhì)得到∠EAD+∠DAC=∠BAC+∠DAC,即∠EAC=∠DAB,再加上條件AB=AC,AD=AE可用“SAS”可以判定△ABD≌△ACE.
解答 解:補充∠EAD=∠BAC,
∵∠EAD=∠BAC,
∴∠EAD+∠DAC=∠BAC+∠DAC,
即∠EAC=∠DAB,
在△AEC和△ADB中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAC=∠DAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS).
故選C
點評 本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x1=-2,x2=-5 | B. | x1=-2,x2=5 | C. | x1=2,x2=5 | D. | x1=2,x2=-5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①②③ | B. | ①③④ | C. | ②③④ | D. | ①② |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{9}=±3$ | B. | $\root{3}{-27}=-3$ | C. | $±\sqrt{16}=4$ | D. | $\sqrt{{{({-2})}^2}}=-2$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2}{3}$ | B. | $-\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | $-\frac{3}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -(-3)和3 | B. | +(-5)和-[-(-5)] | C. | $\frac{1}{3}$和-3 | D. | -(-7)和-|-7| |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 9 | B. | 3 | C. | 6 | D. | 8 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com