| A. | ①②③ | B. | ①③④ | C. | ②③④ | D. | ①② |
分析 證明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到,故結(jié)論①正確;
由△OBO′是等邊三角形,可知結(jié)論②正確;
在△AOO′中,三邊長為3,4,5,這是一組勾股數(shù),故△AOO′是直角三角形;進(jìn)而求得∠AOB=150°,故結(jié)論③正確;
S四邊形AOBO′=S△AOO′+S△OBO′=$\frac{1}{2}$×3×4+$\frac{\sqrt{3}}{4}$×42=6+4$\sqrt{3}$,故結(jié)論④錯(cuò)誤.
解答 解:如圖,![]()
由題意可知,∠1+∠2=∠3+∠2=60°,
∴∠1=∠3,
又∵OB=O′B,AB=BC,
∴△BO′A≌△BOC,
又∵∠OBO′=60°,
∴△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到,
故結(jié)論①正確;
如圖,連接OO′,
∵OB=O′B,且∠OBO′=60°,
∴△OBO′是等邊三角形,
∴OO′=OB=4.
故結(jié)論②正確;
∵△BO′A≌△BOC,
∴O′A=5.
在△AOO′中,三邊長為3,4,5,這是一組勾股數(shù),
∴△AOO′是直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,
故結(jié)論③正確;
S四邊形AOBO′=S△AOO′+S△OBO′=$\frac{1}{2}$×3×4+$\frac{\sqrt{3}}{4}$×42=6+4$\sqrt{3}$,
故結(jié)論④錯(cuò)誤;
故選:A.
點(diǎn)評 本題考查了旋轉(zhuǎn)變換中等邊三角形,直角三角形的性質(zhì).利用勾股定理的逆定理,判定勾股數(shù)3、4、5所構(gòu)成的三角形是直角三角形,這是本題的要點(diǎn).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 20° | B. | 25° | C. | 30° | D. | 50° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y1<y2<y3 | B. | y2<y1<y3 | C. | y3<y1<y2 | D. | y1<y3<y2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ∠B=∠C | B. | ∠D=∠E | C. | ∠DAE=∠BAC | D. | ∠CAD=∠DAC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 35° | B. | 45° | C. | 55° | D. | 65° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 個(gè) | B. | 2個(gè) | C. | 1 個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5條 | B. | 6條 | C. | 9條 | D. | 27條 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com