分析 分兩種情況:①過(guò)A′作MN∥CD交AD于M,交BC于N,則直線MN是矩形ABCD 的對(duì)稱(chēng)軸,得出AM=BN=$\frac{1}{2}$AD=1,由勾股定理得到A′N(xiāo)=0,求得A′M=1,再由勾股定理解得A′E即可;
②過(guò)A′作PQ∥AD交AB于P,交CD于Q;求出∠EBA′=30°,由三角函數(shù)求出AE=A′E=A′B×tan30°;即可得出結(jié)果.
解答 解:分兩種情況:![]()
①如圖1,過(guò)A′作MN∥CD交AD于M,交BC于N,
則直線MN是矩形ABCD 的對(duì)稱(chēng)軸,
∴AM=BN=$\frac{1}{2}$AD=1,
∵△ABE沿BE折疊得到△A′BE,
∴A′E=AE,A′B=AB=1,
∴A′N(xiāo)=$\sqrt{A′{B}^{2}-B{N}^{2}}$=0,即A′與N重合,
∴A′M=1,
∴A′E2=EM2+A′M2,
∴A′E2=(1-A′E)2+12,
解得:A′E=1,
∴AE=1;
②如圖2,
過(guò)A′作PQ∥AD交AB于P,交CD于Q,
則直線PQ是矩形ABCD 的對(duì)稱(chēng)軸,
∴PQ⊥AB,AP=PB,AD∥PQ∥BC,
∴A′B=2PB,
∴∠PA′B=30°,
∴∠A′BC=30°,
∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×$\frac{\sqrt{3}}{3}$=$\frac{\sqrt{3}}{3}$;
綜上所述:AE的長(zhǎng)為1或$\frac{\sqrt{3}}{3}$;
故答案為:1或$\frac{\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查了翻折變換-折疊問(wèn)題,矩形的性質(zhì),勾股定理;正確理解折疊的性質(zhì)是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2π | B. | 3π | C. | 4π | D. | 5π |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 16 | B. | 24 | C. | 32 | D. | 48 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com