分析 (1)由正方形的性質(zhì)得出AD=AB=4cm,∠ADO=∠DAO=∠BAO-45°,再由角平分線和三角形內(nèi)角和定理得出∠DAE=∠AED,得出DE=AD即可;
(2)作OH∥BC,交AF于點(diǎn)H,根據(jù)三角形中位線定理證明OH=$\frac{1}{2}$CF,然后根據(jù)三角形的外角的性質(zhì)證明∠OHE=∠AEO,則OE=OH,即可得出結(jié)論.
解答 (1)解:∵四邊形ABCD是正方形,
∴AD=AB=4cm,∠ADO=∠DAO=∠BAO-45°,
∵AF平分∠BAC,
∴∠OAE=$\frac{1}{2}$∠BAC=22.5°,
∴∠DAE=∠DAO+∠OAE=67.5°,
∴∠AED=180°-∠ADO-∠DAE=67.5°,
∴∠DAE=∠AED,
∴DE=AD=4cm;
(2)證明:作OH∥BC,交AF于點(diǎn)H.如圖所示
:
∵OH∥BC,且正方形ABCD中,AO=OC,
∴AH=HF,即OH是△ACF的中位線.
∴OH=$\frac{1}{2}$CF.
∵HO∥BC,
∴∠AOH=∠ACB=45°,
∴∠OHE=∠AOH+∠FAC=45°+∠FAC,
又∵∠AEO=∠ABD+∠BAE=45°+∠BAE,∠FAC=∠BAE,
∴∠OHE=∠AEO,
∴OE=OH,
∴OE=$\frac{1}{2}CF$.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì)、三角形內(nèi)角和定理、三角形的外角的性質(zhì)、三角形的中位線定理、等腰三角形的判定;熟練掌握正方形的性質(zhì),證明角相等或運(yùn)用三角形的中位線定理把題目轉(zhuǎn)化為證明線段相等的問題是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com