分析 連接OQ,由旋轉(zhuǎn)的性質(zhì)可知:△AQC≌△BOC,從而推出∠OAQ=90°,∠OCQ=90°,再根據(jù)特殊直角三角形邊的關(guān)系,分別求出∠AQO與∠OQC的值,可求出結(jié)果.
解答
解:連接OQ,
∵AC=BC,∠ACB=90°,
∴∠BAC=∠B=45°,
由旋轉(zhuǎn)的性質(zhì)可知:△AQC≌△BOC,
∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,
∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,
∴∠OQC=45°,
∵BO:OA=1:$\sqrt{3}$,
設(shè)BO=1,OA=$\sqrt{3}$,
∴AQ=1,則tan∠AQO=$\frac{AO}{AQ}$=$\sqrt{3}$,
∴∠AQO=60°,
∴∠AQC=105°.
點(diǎn)評(píng) 本題主要考查了圖形旋轉(zhuǎn)的性質(zhì),特殊角直角三角形的邊角關(guān)系,掌握?qǐng)D形旋轉(zhuǎn)的性質(zhì),熟記特殊直角三角形的邊角關(guān)系是解決問題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{18}{5}$ | B. | $\frac{5}{2}$ | C. | $\frac{24}{5}$ | D. | $\frac{9}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 60° | B. | 48° | C. | 30° | D. | 24° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com