分析 在BD上截取BE=CH,連接CO,OE,根據(jù)相似三角形的性質(zhì)得到 $\frac{CH}{BC}$=$\frac{CD}{BD}$,求得CH,根據(jù)等腰直角三角形的性質(zhì)得到AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,等量代換得到∠OCH=∠ABD,根據(jù)全等三角形的性質(zhì)得到OE=OH,∠BOE=∠HOC推出△HOE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)即可得到結(jié)論.
解答 解:在BD上截取BE=CH,連接CO,OE,
∵∠ACB=90°,CH⊥BD,
∵AC=BC=3,CD=1,
∴BD=$\sqrt{10}$,
∴△CDH∽△BDC,
∴$\frac{CH}{BC}$=$\frac{CD}{BD}$,
∴CH=$\frac{3\sqrt{10}}{10}$,
∵△ACB是等腰直角三角形,點(diǎn)O是AB中點(diǎn),
∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,
∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,
∵∠DCH=∠CBD,∴∠OCH=∠ABD,
在△CHO與△BEO中,
$\left\{\begin{array}{l}{CH=BE}\\{∠HCO=∠EBO}\\{OC=OB}\end{array}\right.$,
∴△CHO≌△BEO,
∴OE=OH,∠BOE=∠HOC,
∵OC⊥BO,
∴∠EOH=90°,
即△HOE是等腰直角三角形,
∵EH=BD-DH-CH=$\sqrt{10}$-$\frac{\sqrt{10}}{10}$-$\frac{3\sqrt{10}}{10}$=$\frac{3\sqrt{10}}{5}$,
∴OH=EH×$\frac{\sqrt{2}}{2}$=$\frac{3\sqrt{5}}{5}$,
故答案為:$\frac{3\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查了相似三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),正確的作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com