分析 (1)線段AD繞點A逆時針旋轉90°得到AE,根據(jù)旋轉的性質得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.
(2)證明的方法與(1)一樣.
(3)過A作AM⊥BC于M,EN⊥AM于N,根據(jù)旋轉的性質得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,則NE=MA,由于∠ACB=45°,則AM=MC,所以MC=NE,易得四邊形MCEN為矩形,得到∠DCF=90°,
由此得到Rt△AMD∽Rt△DCF,得$\frac{MD}{CF}=\frac{AM}{DC}$,設DC=x,而∠ACB=45°,AC=$\sqrt{2}$,得AM=CM=3,MD=3-x,利用相似比可得到CF=-$\frac{1}{3}$x2+1,再利用二次函數(shù)即可求得CF的最大值.
解答
解:(1)①∵AB=AC,∠BAC=90°,
∴線段AD繞點A逆時針旋轉90°得到AE,
∴AD=AE,∠BAD=∠CAE,
∴△BAD≌△CAE,
∴CE=BD,∠ACE=∠B,
∴∠BCE=∠BCA+∠ACE=90°,
∴線段CE,BD之間的位置關系和數(shù)量關系為:CE=BD,CE⊥BD;
故答案為:CE=BD,CE⊥BD;
(2)(1)中的結論仍然成立.理由如下:
如圖2,
∵線段AD繞點A逆時針旋轉90°得到AE,
∴AE=AD,∠DAE=90°,
∵AB=AC,∠BAC=90°
∴∠CAE=∠BAD,
∴△ACE≌△ABD,
∴CE=BD,∠ACE=∠B,
∴∠BCE=90°,
所以線段CE,BD之間的位置關系和數(shù)量關系為:CE=BD,CE⊥BD;
(3)45°;$\frac{3}{4}$;![]()
過A作AM⊥BC于M,過E點作EN垂直于MA延長線于N,如圖3,
∵線段AD繞點A逆時針旋轉90°得到AE,
∴∠DAE=90°,AD=AE,
∴∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,
∴NE=AM,
∵CE⊥BD,即CE⊥MC,∴∠NEC=90°,
∴四邊形MCEN為矩形,
∴NE=MC,∴AM=MC,
∴∠ACB=45°,
∵四邊形MCEN為矩形,
∴Rt△AMD∽Rt△DCF,
∴$\frac{MD}{CF}$=$\frac{AM}{DC}$,設DC=x,
∵在Rt△AMC中,∠ACB=45°,AC=3$\sqrt{2}$,
∴AM=CM=3,MD=3-x,∴$\frac{3-x}{CF}$=$\frac{3}{x}$,
∴CF=-$\frac{1}{3}$x2+x=-$\frac{1}{3}$(x-$\frac{3}{2}$)2+$\frac{3}{4}$,
∴當x=$\frac{3}{2}$時有最大值,最大值為$\frac{3}{4}$.
故答案為:45°,$\frac{3}{4}$.
點評 本題考查了旋轉的性質:旋轉前后的兩個圖形全等,對應點與旋轉中心的連線段的夾角等于旋轉角,對應點到旋轉中心的距離相等.也考查了等腰直角三角形的性質和三角形全等及相似的判定與性質.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 4×108 | B. | 4×10-8 | C. | 0.4×108 | D. | -4×108 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com