分析 由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.
解答 解:①由圖知:拋物線與x軸有兩個不同的交點,則△=b2-4ac>0,故①正確;
②拋物線開口向上,得:a>0;
拋物線的對稱軸為x=-$\frac{2a}$=1,b=-2a,故b<0;
拋物線交y軸于負半軸,得:c<0;
所以abc>0;
故②正確;
③∵x=-$\frac{2a}$=1,
∴2a+b=0,故③正確;
④觀察圖象得當x=-1時,y<0,
即a-b+c<0,故④正確;
所以這四個結(jié)論都正確.
故答案為:①②③④.
點評 主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $(-\right.2,2\sqrt{3}\left.{\;})$ | B. | $(-2,-2\sqrt{3})$ | C. | (2$\sqrt{3}$,2) | D. | (2,2) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com