分析 (1)根據(jù)平行四邊形的性質得到AB∥CD,AB=CD,平行線的性質得到∠A=∠EDF,根據(jù)全等三角形的性質即可得到結論;
(2)根據(jù)全等三角形的性質得到DE=AE=$\frac{1}{2}$AD=$\frac{1}{2}$BC,根據(jù)相似三角形的性質得到$\frac{{S}_{1}}{{S}_{2}}$=$\frac{1}{4}$,求得S2=4S1,解方程得到S1=2,求得S2=8,于是得到結論.
解答
(1)證明:∵四邊形ABCD為平行四邊形,
∴AB∥CD,AB=CD,
∴∠A=∠EDF,
又∵E為AD中點,
∴AE=DE,
在△ABE和△DFE中$\left\{{\begin{array}{l}{∠A=∠EDF}\\{AE=DE}\\{∠1=∠2}\end{array}}\right.$,
∴△ABE≌△DFE(ASA),
∴AB=DF,
(2)解:∵△ABE≌△DFE,
∴DE=AE=$\frac{1}{2}$AD=$\frac{1}{2}$BC,
∵DE∥BC,
∴△FED∽△FBC
∴$\frac{{S}_{1}}{{S}_{2}}$=$\frac{1}{4}$,
∴即S2=4S1,
∵S12-S2+4=0,
∴S12-4S1+4=0,∴S1=2,
∴S2=8,
又∵△ABE≌△DFE,
∴?ABCD的面積=S△BCF=8.
點評 本題考查了相似三角形的,平行四邊形的性質,全等三角形的判定和性質,熟練掌握相似三角形的判定和性質是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 2(1-x)2=3.92 | B. | 3.92(1-x)2=2 | C. | 2(1+x)2=3.92 | D. | 3.92(1+x)2=2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com