| A. | 12 | B. | 16 | C. | 4$\sqrt{3}$ | D. | 8$\sqrt{3}$ |
分析 在AC上截取CG=AB=4,連接OG,根據(jù)B、A、O、C四點共圓,推出∠ABO=∠ACO,證△BAO≌△CGO,推出OA=OG=4$\sqrt{2}$,∠AOB=∠COG,得出等腰直角三角形AOG,根據(jù)勾股定理求出AG,即可求出AC.
解答 解:在AC上截取CG=AB=4,連接OG,
∵四邊形BCEF是正方形,∠BAC=90°,
∴OB=OC,∠BAC=∠BOC=90°,
∴B、A、O、C四點共圓,
∴∠ABO=∠ACO,![]()
在△BAO和△CGO中
$\left\{\begin{array}{l}{BA=CG}\\{∠BAO=∠GCO}\\{OB=OC}\end{array}\right.$,
∴△BAO≌△CGO(SAS),
∴OA=OG=4$\sqrt{2}$,∠AOB=∠COG,
∵∠BOC=∠COG+∠BOG=90°,
∴∠AOG=∠AOB+∠BOG=90°,
即△AOG是等腰直角三角形,
由勾股定理得:AG=$\sqrt{A{O}^{2}+O{G}^{2}}$=8,
即AC=AG+CG=8+4=12.
故選A.
點評 本題主要考查對勾股定理,正方形的性質(zhì),直角三角形的性質(zhì),全等三角形的性質(zhì)和判定等知識點的理解和掌握,能熟練地運用這些性質(zhì)進行推理和計算是解此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $m<-\frac{3}{2}$ | B. | $m>-\frac{3}{2}$ | C. | $0<m<\frac{3}{2}$ | D. | m<0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a,b,c為任意實數(shù) | B. | a,b不同時為0 | C. | a不為0 | D. | b,c不同時為0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com