分析 (1)①欲證明AD=BE,只要證明△ACD≌△BCE即可.
②利用:“8字型”可以證明∠OEB=∠ACO,即可解決問(wèn)題.
(2)結(jié)論:垂直.證明方法類似②.
解答 (1)①證明:如圖1中,![]()
∵∠CAB=∠CBA=∠CDE=∠CED=50°,
∴CA=CB,CD=CE,∠ACB=∠DCE=80°,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE,
∴AD=BE.
②解:設(shè)AE與BC交于點(diǎn)O.
∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠COA=∠BOE,
∴∠ACO=∠BEO=80°,
∴∠AEB=80°.
(2)解:結(jié)論:垂直.
理由如下:如圖2中,設(shè)AE與BC交于點(diǎn)O.![]()
∵CA=CB,CD=CE,∠ACB=∠DCE=90°,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠COA=∠BOE,
∴∠ACO=∠BEO=90°,
∴AE⊥BE.
故答案為:AE⊥BE.
點(diǎn)評(píng) 本題考查三角形綜合題、全等三角形的判定和性質(zhì)、等腰三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),學(xué)會(huì)利用“8字型”字母角相等,屬于中考常考題型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (x-$\frac{4+\sqrt{6}}{2}$y)(x-$\frac{4-\sqrt{6}}{2}$y) | B. | 2(x-$\frac{4+\sqrt{6}}{2}$y)(x-$\frac{4-\sqrt{6}}{2}$y) | C. | (2x-4y+$\sqrt{6}$y)(x-$\frac{4-\sqrt{6}}{2}$y) | D. | 2(x-$\frac{4-\sqrt{6}}{2}$y)(x-$\frac{4+\sqrt{6}}{2}$y) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com