| A. | $\frac{2π}{3}$-$\sqrt{3}$ | B. | $\frac{2π}{3}$-2$\sqrt{3}$ | C. | $\frac{4π}{3}$-$\sqrt{3}$ | D. | $\frac{4π}{3}$-2$\sqrt{3}$ |
分析 連接OC,過(guò)點(diǎn)A作AD⊥CD于點(diǎn)D,四邊形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等邊三角形,∠AOC=∠BOC=60°,故△ACO與△BOC為邊長(zhǎng)相等的兩個(gè)等邊三角形,再根據(jù)銳角三角函數(shù)的定義得出AD的長(zhǎng),由S陰影=S扇形AOB-2S△AOC即可得出結(jié)論
解答
解:連接OC,過(guò)點(diǎn)A作AD⊥CD于點(diǎn)D,
∵四邊形AOBC是菱形,
∴OA=AC=2.
∵OA=OC,
∴△AOC是等邊三角形,
∴∠AOC=∠BOC=60°
∴△ACO與△BOC為邊長(zhǎng)相等的兩個(gè)等邊三角形.
∵AO=2,
∴AD=OA•sin60°=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
∴S陰影=S扇形AOB-2S△AOC=$\frac{120π×{2}^{2}}{360}$-2×$\frac{1}{2}$×2×$\sqrt{3}$=$\frac{4π}{3}$-2$\sqrt{3}$.
故選D.
點(diǎn)評(píng) 本題考查的是扇形面積的計(jì)算,熟記扇形的面積公式及菱形的性質(zhì)是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| 時(shí)間段 | 7~8點(diǎn) | 8~9點(diǎn) | 9~10點(diǎn) | 10~11點(diǎn) | 11~12點(diǎn) |
| 數(shù)量/輛 | 68 | 56 | 50 | 68 | 54 |
| A. | 56,68 | B. | 68,56 | C. | 68,55 | D. | 68,50 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{1}{4}$ | B. | -4 | C. | $\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | abc<0 | |
| B. | 當(dāng)m≠1時(shí),a+b>am2+bm | |
| C. | 2a+b=0 | |
| D. | 若ax12+bx1=ax22+bx2且x1≠x2,x1+x2=3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com