| A. | 6 | B. | 5 | C. | 4 | D. | 8 |
分析 根據(jù)∠BAC=90°,AB=AC,得到∠BAD+∠CAD=90°,由于CE⊥AD于E,于是得到∠ACE+∠CAE=90°,根據(jù)余角的性質(zhì)得到∠BAD=∠ACE,推出△ABD≌△ACE,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.
解答 解:∵∠BAC=90°,AB=AC,
∴∠BAD+∠CAD=90°,
∵CE⊥AD于E,
∴∠ACE+∠CAE=90°,
∴∠BAD=∠ACE,
在△ABD與△ACE中,
$\left\{\begin{array}{l}{∠D=∠AEC=90°}\\{∠BAD=∠ACE}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△ACE,
∴AE=BD=4,AD=CE=10,
∴DE=AD-AE=6.
故選A.
點評 本題考查了全等三角形的判定與性質(zhì),利用了全等三角形的判定與性質(zhì),利用余角的性質(zhì)得出∠BAD=∠ACE是解題關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 2$\sqrt{3}$-2 | B. | $\sqrt{3}$ | C. | 4-2$\sqrt{2}$ | D. | 2 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com