如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC、AC分別交于D、E兩點(diǎn), DF
AC于F.
(1)求證:DF為⊙O的切線;
(2)若
,CF=9,求AE的長.
![]()
(1)證明見解析;(2)7.
【解析】
試題分析:(1)連接OD,AD,求出OD∥AC,推出OD⊥DF,根據(jù)切線的判定推出即可.
(2)求出CD、DF,推出四邊形DMEF和四邊形OMEN是矩形,推出OM=EN,EM=DF=12,求出OM,即可求出答案.
試題解析:(1)連接OD,AD,
∵AB是⊙的直徑,∴∠ADB=90°.
又∵AB=AC,∴BD=CD.
又∵OB=OA,∴OD∥AC.
∵DF⊥AC,∴OD⊥DF.
又∵OD為⊙的半徑,∴DF為⊙O的切線.
![]()
(2)連接BE交OD于M,過O作ON⊥AE于N,則AE=2NE,
∵
,CF=9,∴DC=15.∴
.
∵AB是直徑,∴∠AEB=∠CEB=90°.
∵DF⊥AC,OD⊥DF,∴∠DFE=∠FEM=∠MDF=90°.∴四邊形DMEF是矩形.
∴EM=DF=12,∠DME=90°,DM=EF.即OD⊥BE.
同理四邊形OMEN是矩形,∴OM=EN.
∵OD為半徑,∴BE=2EM=24.
∵∠BEA=∠DFC=90°,∠C=∠C,∴△CFD∽△CEB.
∴
,即
.
∴EF=9=DM.
設(shè)⊙O的半徑為R,
則在Rt△EMO中,由勾股定理得:
,解得:
.
則EN=OM=
.
∴AE=2EN=7.
![]()
考點(diǎn):1.垂徑定理;2.勾股定理;3.矩形的性質(zhì)和判定;4.切線的判定;5.平行線的性質(zhì)的應(yīng)用.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京市通州區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,一次函數(shù)
的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)
的圖象在第一象限內(nèi)交于點(diǎn)C,CD⊥x軸于點(diǎn)D,OD=2AO,求反比例函數(shù)
的表達(dá)式.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京市燕山區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:解答題
定義:如果一個y與x的函數(shù)圖象經(jīng)過平移后能與某反比例函數(shù)的圖象重合,那么稱這個函數(shù)是y與x的“反比例平移函數(shù)”.例如:
的圖象向左平移2個單位,再向下平移1個單位得到
的圖象,則
是y與x的“反比例平移函數(shù)”.
(1)若矩形的兩邊分別是2cm、3cm,當(dāng)這兩邊分別增加x(cm)、y(cm)后,得到的新矩形的面積為8cm2,求y與x的函數(shù)表達(dá)式,并判斷這個函數(shù)是否為“反比例平移函數(shù)”.
(2)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(9,0)、(0,3).點(diǎn)D是OA的中點(diǎn),連接OB、CD交于點(diǎn)E,“反比例平移函數(shù)”
的圖象經(jīng)過B、E兩點(diǎn).則這個“反比例平移函數(shù)”的表達(dá)式為 ;這個“反比例平移函數(shù)”的圖象經(jīng)過適當(dāng)?shù)淖儞Q與某一個反比例函數(shù)的圖象重合,請寫出這個反比例函數(shù)的表達(dá)式.
(3)在(2)的條件下,已知過線段BE中點(diǎn)的一條直線l交這個“反比例平移函數(shù)”圖象于P、Q兩點(diǎn)(P在Q的右側(cè)),若B、E、P、Q為頂點(diǎn)組成的四邊形面積為16,請求出點(diǎn)P的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京市燕山區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,點(diǎn)C在線段AB上,AB=8,AC=2,P為線段CB上一動點(diǎn),點(diǎn)A繞點(diǎn)C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D. 設(shè)CP=x,
CPD 的面積為y. 則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京市燕山區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:選擇題
的絕對值是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京市海淀區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在△ABC中,∠ACB=90º, D是AC上的一點(diǎn),且AD=BC,DE
AC于D, ∠EAB=90º.
求證:AB=AE.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京市朝陽區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AD=6,A(1,0), B(9,0),直線y=kx+b經(jīng)過B、D兩點(diǎn).
(1)求直線y=kx+b的表達(dá)式;
(2)將直線y=kx+b平移,當(dāng)它與矩形沒有公共點(diǎn)時,直接寫出b的取值范圍.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com