分析 (1)應(yīng)用加減消元法,求出方程組的解是多少即可.
(2)應(yīng)用代入消元法,求出方程組的解是多少即可.
(3)(4)解一元一次不等式組的方法與步驟:①求不等式組中每個(gè)不等式的解集;②利用數(shù)軸求公共部分,據(jù)此求解即可.
解答 解:(1)$\left\{\begin{array}{l}{3x-5y=3①}\\{\frac{x}{2}-\frac{y}{3}=1②}\end{array}\right.$
由②,可得:3x-2y=6③,
③-①,可得:3y=3,
解得y=1,
把y=1代入①,解得x=$\frac{8}{3}$,
∴原方程組的解是$\left\{\begin{array}{l}{x=\frac{8}{3}}\\{y=1}\end{array}\right.$.
(2)$\left\{\begin{array}{l}{3(x+y)-4(x-y)=4①}\\{\frac{x+y}{2}+\frac{x-y}{6}=1②}\end{array}\right.$
由①,可得:x=7y-4③,
把③代入②,解得y=$\frac{11}{15}$,
∴x=7×$\frac{11}{15}$-4=$\frac{17}{15}$,
∴原方程組的解是$\left\{\begin{array}{l}{x=\frac{17}{15}}\\{y=\frac{11}{15}}\end{array}\right.$.
(3)$\left\{\begin{array}{l}{5x-3>2x-9①}\\{1-2x≥-3②}\end{array}\right.$
解不等式①,得x>-2,
解不等式②,得x≤2,
∴這個(gè)不等式組的解集是-2<x≤2.
(4)$\left\{\begin{array}{l}{x-3(x-2)>4①}\\{\frac{2x-1}{5}>\frac{x+1}{2}②}\end{array}\right.$
解不等式①,得x<1,
解不等式②,得x<-7,
∴這個(gè)不等式組的解集是x<-7.
點(diǎn)評(píng) 此題主要考查了解一元一次不等式組的方法,以及解二元一次方程組的方法,要熟練掌握.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5a2b-2a2b=3 | B. | x6÷x2=x3 | C. | (2x2)3=8x6 | D. | (a-b)2=a2-b2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com