分析 (1)通過全等三角形△BEC≌△DFA的對應(yīng)邊相等推知BE=DF,則結(jié)合已知條件證得結(jié)論;
(2)根據(jù)矩形的性質(zhì)計算即可.
解答 (1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∴∠DAF=∠BCE.
又∵BE∥DF,
∴∠BEC=∠DFA.
在△BEC與△DFA中,$\left\{\begin{array}{l}{∠BEC=∠DFA}\\{∠BCE=∠DAF}\\{BC=AD}\end{array}\right.$,
∴△BEC≌△DFA(AAS),
∴BE=DF.
又∵BE∥DF,
∴四邊形BEDF為平行四邊形;
(2)連接BD,BD與AC相交于點O,如圖:![]()
∵AB⊥AC,AB=4,BC=2$\sqrt{13}$,
∴AC=6,
∴AO=3,
∴Rt△BAO中,BO=5,
∵四邊形BEDF是矩形,
∴OE=OB=5,
∴點E在OA的延長線上,且AE=2.
點評 本題考查了全等三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì).平行四邊形的判定方法共有五種,應(yīng)用時要認真領(lǐng)會它們之間的聯(lián)系與區(qū)別,同時要根據(jù)條件合理、靈活地選擇方法.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 30° | B. | 40° | C. | 50° | D. | 60° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com