分析 (1)首先證明EA=EC,再證明EC=EB即可解決問題.
(2)先說明P與E重合時(shí)△PBC的周長(zhǎng)最小,最小值=AB+AC.
解答 (1)證明:∵DA=DC,DF⊥AC,
∴AF=CF,
∴DE垂直平分線段AC,
∴EA=EC,
∴∠EAC=∠ECA,
∵∠ACB=90°,![]()
∴∠EAC+∠B=90°,∠ECA+∠ECB=90°,
∴∠ECB=∠B,
∴EC=EB=EA.
(2)連接PB、PC、PA.
要使得△PBC的周長(zhǎng)最小,只要PB+PC最小即可.
∵PB+PC=PA+PB≥AB,
∴當(dāng)P與E重合時(shí),PA+PB最小,
∴△PBC的周長(zhǎng)最小值=AB+BC=15+9=24cm.
點(diǎn)評(píng) 本題考查軸對(duì)稱-最小值問題,線段垂直平分線的判定和性質(zhì)、等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)利用對(duì)稱解決最值問題,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{\sqrt{5}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $\frac{2\sqrt{3}}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-3,-4) | B. | (1,-4) | C. | (1,-3) | D. | (-1,-3) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com