欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.如圖,已知正方形ABCD,直線l1、l2、l3分別通過A、B、C三點(diǎn),且l1∥l2∥l3,若l1與l2的距離為3,l2與l3的距離為5,則正方形ABCD的面積等于( 。
A.9B.25C.34D.無法確定

分析 畫出l1到l2,l2到l3的距離,分別交l2,l3于E,F(xiàn),通過AAS證明△ABE≌△BCF,得出BF=AE,再由勾股定理即可得出結(jié)論.

解答 解:過點(diǎn)A作AE⊥l2,過點(diǎn)C作CF⊥l2,
∴∠CBF+∠BCF=90°,
四邊形ABCD是正方形,
∴AB=BC=CD=AD,
∴∠DAB=∠ABC=∠BCD=∠CDA=90°,
∴∠ABE+∠CBF=90°,
∵l1∥l2∥l3,
∴∠ABE=∠BCF,
在△ABE和△BCF中,
$\left\{\begin{array}{l}{∠AEB=∠BFC}\\{∠ABE=∠BCF}\\{AB=BC}\end{array}\right.$,
∴△ABE≌△BCF(AAS),
(畫出L1到L2,L2到L3的距離,分別交L2,L3于E,F(xiàn)),
∴BF=AE,
∴BF2+CF2=BC2
∴BC2=32+52=34.
故選C.

點(diǎn)評(píng) 此題考查了全等三角形的判定與性質(zhì),勾股定理,以及正方形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.圖1是邊長(zhǎng)分別為4$\sqrt{3}$和2的兩個(gè)等邊三角形紙片ABC和ODE疊放在一起(C與O重合).
(1)操作:固定△ABC,將△0DE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°后得到△ODE,連結(jié)AD、BE,CE的延長(zhǎng)線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.
(2)在(1)的條件下將的△ODE,在線段CF上沿著CF方向以每秒1個(gè)單位的速度平移,平移后的△CDE設(shè)為△PQR,當(dāng)點(diǎn)P與點(diǎn)F重合時(shí)停止運(yùn)動(dòng)(圖3)
探究:設(shè)△PQR移動(dòng)的時(shí)間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)將圖1中△0DE固定,把△ABC沿著OE方向平移,使頂點(diǎn)C落在OE的中點(diǎn)G處,設(shè)為△ABG,然后將△ABG繞點(diǎn)G順時(shí)針旋轉(zhuǎn),邊BG交邊DE于點(diǎn)M,邊AG交邊DO于點(diǎn)N,設(shè)∠BGE=α(30°<α<90°);(圖4)
探究:在圖4中,線段ON•EM的值是否隨α的變化而變化?如果沒有變化,請(qǐng)你求出ON•EM的值,如果有變化,請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖1,正方形ABCD中,E,F(xiàn)分別是邊BC,CD上的點(diǎn),AF與ED相交于O,且BE=CF,過點(diǎn)C作CG⊥DE,垂足為G.
(1)求證:DE⊥AF;
(2)探究:線段AO,DO,GO長(zhǎng)度之間存在怎樣的數(shù)量關(guān)系?請(qǐng)寫出并說明理由;
(3)拓展:若點(diǎn)E,F(xiàn)分別在線段BC,CD的延長(zhǎng)線上,AF與ED的延長(zhǎng)線相交于O,其余條件不變,請(qǐng)你在圖2中畫出滿足條件的圖形,并寫出線段AO,DO,GO長(zhǎng)度之間的數(shù)量關(guān)系(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.-|-a|是一個(gè)(  )
A.正數(shù)B.正數(shù)或零C.負(fù)數(shù)D.負(fù)數(shù)或零

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),拋物線y=x2+bx+c與直線y=2x-6交于x軸正半軸上的B點(diǎn),拋物線與x軸的負(fù)半軸交于點(diǎn)A,與y軸的負(fù)半軸交于點(diǎn)C,OB=3OA.
(1)求拋物線的解析式;
(2)點(diǎn)D為拋物線的頂點(diǎn),連接BD,CD,若線段BD上有一點(diǎn)P,使∠OCP+∠CDP=180°,求∠DCP的正切值;
(3)在(2)的條件下,在拋物線上存在點(diǎn)E,作EF⊥CD,交直線CD于點(diǎn)F,使∠CEF=∠DCP,求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,正方形ABCD中,以AB為邊向形外作等邊三角形ABE,連接CE,交BD于點(diǎn)F,連接AF.
(1)求∠BEC的度數(shù);
(2)求∠AFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.順次連接對(duì)角線互相垂直的四邊形的中點(diǎn)的四邊形是( 。
A.矩形B.直角梯形C.菱形D.正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在△ABC中,∠DBC=∠ECB=$\frac{1}{2}$∠A,BD、CE交于點(diǎn)P,探究BE與CD的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如果一個(gè)正數(shù)的平方根為3a-5和2a-10,求這個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案