分析 連接OC,易證AO⊥OC,OC=$\sqrt{3}$OA.由∠AOC=90°想到構(gòu)造K型相似,過點(diǎn)A作AE⊥y軸,垂足為E,過點(diǎn)C作CF⊥y軸,垂足為F,可證△AEO∽△OFC.從而得到OF=$\sqrt{3}$AE,F(xiàn)C=$\sqrt{3}$EO..設(shè)點(diǎn)A坐標(biāo)為(a,b)則ab=1,可得FC•OF=3.設(shè)點(diǎn)C坐標(biāo)為(x,y),從而有FC•OF=-xy=-3,即k=xy=-3.
解答
解:∵雙曲線y=$\frac{1}{x}$關(guān)于原點(diǎn)對稱,
∴點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對稱.
∴OA=OB.
連接OC,如圖所示.
∵△ABC是等邊三角形,OA=OB,
∴OC⊥AB.∠BAC=60°.
∴tan∠OAC=$\frac{OC}{OA}$=$\sqrt{3}$.
∴OC=$\sqrt{3}$OA.
過點(diǎn)A作AE⊥y軸,垂足為E,過點(diǎn)C作CF⊥y軸,垂足為F,
∵AE⊥OE,CF⊥OF,OC⊥OA,
∴∠AEO=∠OFC,∠AOE=90°-∠FOC=∠OCF.
∴△AEO∽△OFC.
∴$\frac{AE}{OF}$=$\frac{EO}{FC}$=$\frac{AO}{OC}$.
∵OC=$\sqrt{3}$OA,
∴OF=$\sqrt{3}$AE,F(xiàn)C=$\sqrt{3}$EO.
設(shè)點(diǎn)A坐標(biāo)為(a,b),
∵點(diǎn)A在第一象限,
∴AE=a,OE=b.
∴OF=$\sqrt{3}$AE=$\sqrt{3}$a,F(xiàn)C=$\sqrt{3}$EO=$\sqrt{3}$b.
∵點(diǎn)A在雙曲線y=$\frac{1}{x}$上,
∴ab=1.
∴FC•OF=$\sqrt{3}$b•$\sqrt{3}$a=3ab=3,
設(shè)點(diǎn)C坐標(biāo)為(x,y),
∵點(diǎn)C在第四象限,
∴FC=x,OF=-y.
∴FC•OF=x•(-y)=-xy=3.
∴xy=-3.
∵點(diǎn)C在雙曲線y=$\frac{k}{x}$上,
∴k=xy=-3.
故答案為:-3.
點(diǎn)評 本題考查了等邊三角形的性質(zhì)、反比例函數(shù)的性質(zhì)、相似三角形的判定與性質(zhì)、點(diǎn)與坐標(biāo)之間的關(guān)系、特殊角的三角函數(shù)值等知識(shí),有一定的難度.由∠AOC=90°聯(lián)想到構(gòu)造K型相似是解答本題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 組別 | 消費(fèi)額(x)元 |
| A | 10≤x<100 |
| B | 100≤x<200 |
| C | 200≤x<300 |
| D | 300≤x<400 |
| E | x≥400 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (ab)3=a3b | B. | $\frac{{a}^{6}}{{a}^{2}}$=a3 | C. | $\frac{-a-b}{a+b}$=-1 | D. | (a+b)2=a2+b2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 如果一件事發(fā)生的機(jī)會(huì)只有千萬分之一,那么它就是不可能事件 | |
| B. | 如果一件事發(fā)生的機(jī)會(huì)達(dá)99.999%,那么它就是必然事件 | |
| C. | 如果一件事不是不可能事件,那么它就是必然事件 | |
| D. | 如果一件事不是必然事件,那么它就是不可能事件或隨機(jī)事件 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com