分析 (1)根據(jù)已知條件得到AD=BD,由等腰三角形的性質得到∠B=∠DAE,根據(jù)AD是△ABC的角平分線,求得∠DAE=∠DAC,于是得到∠B=∠DAE=∠DAC,列方程即可得到結論;
(2)根據(jù)已知條件求得Rt△ACD≌Rt△AED,根據(jù)全等三角形的性質得到AE=BE,于是得到AB=2AE=2×3=6,即可得到結論.
解答 解:(1)猜想:∠B=30°,
∵DE⊥AB且AE=BE,
∴AD=BD,
∴∠B=∠DAE,
∵AD是△ABC的角平分線,
∴∠DAE=∠DAC,
∴∠B=∠DAE=∠DAC,
∵∠C=90°,
∴∠B+∠DAE+∠DAC=90°,
∴∠B=30°;
(2)∵∠C=90°,AD是△ABC的角平分線,DE⊥AB,
在Rt△ACD與Rt△AED中,
$\left\{\begin{array}{l}{CD=DE}\\{AD=AD}\end{array}\right.$,
∴Rt△ACD≌Rt△AED,
∴AE=BE,
∴AB=2AE=2×3=6,
∴S△ABD=$\frac{1}{2}$AB•DE=$\frac{1}{2}$×6×2=6cm2.
點評 本題考查了全等三角形的判定和性質,角平分線的性質,三角形的面積的求法,熟練掌握全等三角形的判定和性質是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com