分析 首先根據(jù)角平分線的性質(zhì)可得∠ACB=∠DBC,然后再加上公共邊BC=BC可利用ASA定理判定△ABC≌△DCB.
解答 證明:∵∠ABC=∠DCB,BD、CA分別是∠ABC、∠DCB的平分線,
∴∠ACB=∠DBC,
在△ABC和△DCB中,
$\left\{\begin{array}{l}{∠ACB=∠DBC}\\{BC=BC}\\{∠ABC=∠DCB}\end{array}\right.$,
∴△ABC≌△DCB(ASA).
點評 此題主要考查了三角形全等的判定,判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1.8萬件 | B. | 1.7萬件 | C. | 1.5萬件 | D. | 1.1萬件 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | $\sqrt{5}$ | D. | 1+$\sqrt{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{3+4}$=$\sqrt{3}$+$\sqrt{4}$ | B. | $\sqrt{4-3}$=$\sqrt{4}$-$\sqrt{3}$ | C. | $\sqrt{{4}^{2}-{3}^{2}}$=4-3 | D. | $\sqrt{(4+3)^{2}}$=4+3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com